首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
KRN7000 is an important ligand identified for CD1d protein of APC, and KRN7000/CD1d complex can stimulate NKT cells to release Th1 and Th2 cytokines. In an effort to understand the structure–activity relationships, we have carried out the synthesis of a complete set of the eight KRN7000 stereoisomers, and their biological activities have been examined.  相似文献   

2.
KRN7000, an anticancer drug candidate developed by Kirin Brewery Co. in 1995, is an α-galactosyl ceramide. It is a ligand making a complex with CD1d protein, and it stimulates invariant natural killer T (NKT) cells, which are one of the lineages of immunocytes. NKT cells activated by recognition of the CD1d/KRN7000 complex with its invariant T-cell receptor (TCR) can induce both protective and regulatory immune responses. To determine the recognition and activation mechanisms of NKT cells and to develop drug candidates more effective than KRN7000, a large number of analogs of KRN7000 have been synthesized. Some of them show potent bioactivities and have the potential of being utilized as therapeutic agents. In this review, structure-activity relationship studies of novel glycolipids which stimulate NKT cells efficiently are summarized.  相似文献   

3.
RCAI-147 is one of the hydroxylated analogues of KRN7000 which is known as a ligand for the activation of CD1d mediated invariant natural killer T cells (iNKT cells) and releases both T helper 1 (Th1) cytokines such as IFN-γ and T helper 2 (Th2) cytokines such as IL-4. KRN7000 has been anticipated as an antitumor drug or an adjuvant for viral infection such as influenza, because of its strong secretion of IFN-γ. In an interesting twist, it has been obvious in our previous paper that RCAI-147 induces much more Th2 cytokines (IL-4) than Th1 cytokines (IFN-γ) from iNKT cells compared to KRN7000, and shows fairly good result in the experimental autoimmune encephalomyelitis (EAE) test. Therefore, synthesis of RCAI-172 (C6-OH epimer of RCAI-147) was attempted to examine the biological activity. As a result, RCAI-172 was synthesized and its biological activity biased to Th2 response largely compared to that of KRN7000. However, this level decreased to approximately 61% compared to that of RCAI-147. And the clinical score of RCAI-172 for EAE suppression was disappointing. There exist seven chiral centers in the aglycon part of RCAI-172, and even though the change of configuration is just one position (C6-OH), the effect on both Th1/Th2 response and EAE test is fairly large.  相似文献   

4.
Glycoceramides can activate NKT cells by binding with CD1d to produce IFN-gamma, IL-4, and other cytokines. An efficient synthetic pathway for alpha-galactosylceramide (KRN7000) was established by coupling a protected galactose donor to a properly protected ceramide. During the investigation, it was discovered that when the ceramide was protected with benzyl groups, only beta-galactosylceramide was produced from the glycosylation reaction. In contrast, the ceramide with benzoyl protecting groups produced alpha-galactosylceramide. Isoglobotrihexosylceramide (iGb3) was prepared by glycosylation of Galalpha1-3Galbeta1-4Glc donor with 2-azido-sphingosine in high yield. Biological assays on the synthetic KRN7000 and iGb3 were performed using human and murine iNKT cell clones or hybridomas.  相似文献   

5.
Natural killer T (NKT) cells express a semi-invariant Vα14 T cell receptor (TCR) and recognize structurally diverse antigens presented by the antigen-presenting molecule CD1d that range from phosphoglycerolipids to α- and β-anomeric glycosphingolipids, as well as microbial α-glycosyl diacylglycerolipids. Recently developed antibodies that are specific for the complex of the prototypical invariant NKT (iNKT) cell antigen αGalCer (KRN7000) bound to mouse CD1d have become valuable tools in elucidating the mechanism of antigen loading and presentation. Here, we report the 3.1 Å resolution crystal structure of the Fab of one of these antibodies, L363, bound to mCD1d complexed with the αGalCer analog C20:2, revealing that L363 is an iNKT TCR-like antibody that binds CD1d-presented αGalCer in a manner similar to the TCR. The structure reveals that L363 depends on both the L and H chains for binding to the glycolipid-mCD1d complex, although only the L chain is involved in contacts with the glycolipid antigen. The H chain of L363 features residue Trp-104, which mimics the TCR CDR3α residue Leu-99, which is crucial for CD1d binding. We characterized the antigen-specificity of L363 toward several different glycolipids, demonstrating that whereas the TCR can induce structural changes in both antigen and CD1d to recognize disparate lipid antigens, the antibody L363 can only induce the F′ roof formation in CD1d but fails to reorient the glycolipid headgroup necessary for binding. In summary, L363 is a powerful tool to study mechanism of iNKT cell activation for structural analogs of KRN7000, and our study can aid in the design of antibodies with altered antigen specificity.  相似文献   

6.
A novel series of CD1d ligand α-galactosylceramides (α-GalCers) were synthesized by incorporation of the heavy atoms Br and Se in the acyl chain backbone of α-galactosyl-N-cerotoylphytosphingosine. The synthetic analogues are potent CD1d ligands and stimulate mouse invariant natural killer T (iNKT) cells to selectively enhance Th1 cytokine production. These synthetic analogues would be efficient X-ray crystallographic probes to disclose precise atomic positions of alkyl carbons and lipid–protein interactions in KRN7000/CD1d complexes.  相似文献   

7.
RCAI-84, 91, and 105-108 (1-6), the analogs of KRN7000 (A) with a ureido or a thioureido linkage instead of a carboxamido bond, were synthesized to examine their immunostimulatory activity against mouse lymphocytes. According to their bioassay, the ureido analog of KRN7000 [RCAI-105 (1)] and its 6'-O-methylated derivative [RCAI-106 (4)] induced a large amount of IFN-γ in mice in vivo. The hexadecyl ureido analog [RCAI-84 (2)] was comparable to KRN7000 in its bioactivity. The octylureido [RCAI-107 (3)], 5-phenylpentylureido [RCAI-108 (5)], and thioureido [RCAI-91 (6)] analogs were almost inactive.  相似文献   

8.
A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.  相似文献   

9.
α-Galactosylceramide (αGalCer, KRN7000) has been identified as a modulator of immunological processes through its capacity to bind iNKT cells mediated by CD1d molecules. Some analogues in while the amide group in αGalCer is replaced with ester or ether groups were synthesized from d-arabinitol or l-ribose to evaluate their ability to activate iNKT cells. Ester analogues 30a, 31a, and 61 showed activity for IFNγ and IL-4 production of iNKT cells, while ether (31b) and 4-methoxy ester (76) analogues of α-galactosylceramide were not active for iNKT cells.  相似文献   

10.
Invariant Natural Killer T cells (iNKT) are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR) loops, CDR3β, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3β loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3β in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist α-linked glycolipid antigen OCH and structurally different endogenous β-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3β sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3β for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3β dependent functional hierarchy of human iNKT cells.  相似文献   

11.
Natural killer T (NKT) cells are a newly discovered subset of lymphocytes. It appears that this subset has potential as important regulators of immune responses. But because there are relatively few NKT cells in lymphoid organs and because of technical difficulties in detecting NKT cells in most mouse strains, the roles of NKT cells have not been fully identified and little attention has been paid to the roles of NKT cells in immunological experiments in which NK1.1- strains were used. To examine the existence of functional NKT cells in various strains of experimental mice, including NK1.1- strains, we utilized alpha-galactosylceramide (KRN7000) which is thought to react specifically with NKT cells. Indeed, we could confirm that early cytokine (IL-4 and IFN-gamma) secretion at 2 h after the injection of KRN7000 was dependent on NKT cells. With this in vivo system, we have successfully detected the presence of functional NKT cells in various mouse strains, including AKR/N, BALB/c, C3H/HeJ, C3H/HeN, C57BL/6, C.B-17, CBA/N, NC, NOD, SJL, W/Wv, aly/aly and aly/+. Notable increases of serum IL-4 were detected in W/Wv and aly/+ strains, and defective response of IFN-gamma in SJL mice and that of IL-4 in NOD mice were observed. This is the first report to show the functional significance of NKT cells in cytokine secretion in various mouse strains in response to a ligand for the T cell receptor of NKT cells.  相似文献   

12.
RCAI-17, 22, 24-26, 29, 31, 34-36, 38-40, and 88, the analogs of KRN7000 with a sulfonamide linkage instead of an amide bond, were synthesized to examine their bioactivity for mouse natural killer (NK) T cells. RCAI-17, 22, 24-26, 29, 31, 34-36, and 88 are the aromatic sulfonamide analogs, while RCAI-39 and 40 are the aliphatic ones. RCAI-38 is a C-galactoside analog of RCAI-26, which is the p-toluenesulfonamide analog of KRN7000. According to their bioassay, these sulfonamide analogs were shown to be the stimulants of mouse NKT cells to induce the production of Th2-biased cytokines in vitro, while RCAI-38 did not induce any cytokine production.  相似文献   

13.
While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCerBf), which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000) that is the prototypical agonist of CD1d-restricted natural killer T (iNKT) cells. We demonstrate that α-GalCerBf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.  相似文献   

14.
The synthesis and evaluation for iNKT stimulation of alpha-S-galactosylceramide is reported. Prepared by alkylation of a galactosylthiol, this analog of the potent immunostimulatory agent, KRN7000, did not stimulate iNKT cells either in vitro or in vivo.  相似文献   

15.
Cyclitol [RCAI-37 (1), 59 (5), 92 (7), and 102 (2)] and carbasugar analogs [RCAI-56 (3), 60 (4), and 101 (6)] of KRN7000 were synthesized through coupling reactions of the corresponding cyclitol or carbasugar derivatives with a cyclic sulfamidate (9) as the key step. Bioassay showed RCAI-56 (3, carbagalactose analog of KRN7000), 59 (5, 1-deoxy-neo-inositol analog), and 92 (7, 1-O-methylated 5) to be remarkably potent stimulants of mouse lymphocytes to produce Th1-biased cytokines, such as interferon-γ, in vivo. RCAI-60 (4, carbafucose analog) and RCAI-101 (6, 6-O-methylated 3) showed strong bioactivity, on the other hands, RCAI-37 (1, myo-inositol analog) and 102 (2, neo-inositol analog) induced little cytokine production.  相似文献   

16.
Conformationally restricted analogues of KRN7000, an alpha-d-galactosyl ceramide, were synthesized to examine their bioactivity for mouse natural killer (NK) T cells to produce cytokines. RCAI-8, 9, 51, and 52 are the analogues with a pyrrolidine ring, and RCAI-18, 19, 49, and 50 are those with an azetidine ring. RCAI-18 was shown to be a potent inducer of cytokine production by mouse NKT cells, while RCAI-51 was a moderately active inducer.  相似文献   

17.
We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α12)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative.  相似文献   

18.
Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize.  相似文献   

19.
Our goal in the search for potentially bioactive analogues of KRN 7000 was to design an easy synthetic approach to a library of analogues using a strategy recently developed in our laboratory based on a Nucleophilic addition followed by an Epoxide Opening (the NEO strategy). Through the use of a common pivotal structure, a new C-galactoside ester analogue (23) was synthesized which showed an encouraging TH2 biased response during preliminary biological tests.  相似文献   

20.
The kernel row number (KRN) per ear is an important component of maize (Zea mays L.) yield. In this study, a line with six kernel rows, MT-6, was used to investigate the genetic basis of KRN by quantitative trait locus (QTL) mapping. MT-6 was derived from a maize inbred line Mo17 and a teosinte entry X26-4 (Zea mays ssp. mexicana), with 23 % of its genome being homologous to X26-4. An MT-6/B73 F2 segregating population consisting of 266 individuals was genotyped using 192 molecular markers spread evenly across the genome. The same F2 population, together with its F2:3 population, was phenotyped for KRN in three environments. Five individual QTL for KRN, including three substantially consistent major QTL detected in all environments, were identified on chromosomes 1, 2, 3, 4, and 5, respectively. These QTL accounted for 39.5–65.0 % of the KRN variation in these populations. Additionally, one pair of epistatic interaction between two loci with additive effects was detected and accounted for about 3 % of KRN variation. These results demonstrate that a few major QTL could substantially affect the evolution of maize KRNs and therefore provide valuable information for our understanding of the mechanism of KRN and the improvement in maize grain yield by molecular breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号