首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Reaction of the acyl chlorides of phthalimido-glycine or phthalimido-beta-alanine with 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded after hydrazinolysis and deprotection of the phthalimido group the corresponding 5-(omega-aminoalkylcarboxamido)-1,3,4-thiadiazole-2-sulfonamides. Reaction of 5-(beta-aminoethylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide with sulfonyl halides or acyl halides afforded a series of compounds possessing beta-alkyl/arylsulfonyl/carbonylamidoethylcarboxamido moieties in the 5 position of the thiadiazole-2-sulfonamide ring. The new derivatives were efficient inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form), but especially against CA II and CA IV (in nanomolar range), the two isozymes known to play an important role in aqueous humor secretion within the ciliary processes of the eye. Some of the synthesized inhibitors possessed good water solubility (as hydrochlorides or sodium salts) and were applied as 2% solutions directly into the eye of normotensive or glaucomatous albino rabbits. Very strong intraocular pressure (IOP) lowering was observed for many of them for prolonged periods of 1-2 h, and the active drug was detected in eye tissues and fluids indicating that the antiglaucoma effect is due to CA inhibition within the eye.  相似文献   

2.
The X-ray crystal structures of 5-amino-1,3,4-thiadiazole-2-sulfonamide (the acetazolamide precursor) and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide in complex with the human isozyme II of carbonic anhydrase (CA, EC 4.2.1.1) are reported. The thiadiazole-sulfonamide moiety of the two compounds binds in the canonic manner to the zinc ion and interacts with Thr199, Glu106, and Thr200. The substituted phenyl tail of the second inhibitor was positioned in the hydrophobic part of the binding pocket, at van der Waals distance from Phe131, Val 135, Val141, Leu198, Pro202, and Leu204. These structures may help in the design of better inhibitors of these widespread zinc-containing enzymes.  相似文献   

3.
Reaction of the acyl chlorides of phthalimido-glycine or phthalimido-beta-alanine with 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded after hydrazinolysis and deprotection of the phthalimido group the corresponding 5-(omega-aminoalkylcarboxamido)-1,3,4-thiadiazole-2-sulfonamides. Reaction of 5-(beta-aminoethylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide with sulfonyl halides or acyl halides afforded a series of compounds possessing beta-alkyl/arylsulfonyl/carbonylamidoethylcarboxamido moieties in the 5 position of the thiadiazole-2-sulfonamide ring. The new derivatives were efficient inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form), but especially against CA II and CA IV (in nanomolar range), the two isozymes known to play an important role in aqueous humor secretion within the ciliary processes of the eye. Some of the synthesized inhibitors possessed good water solubility (as hydrochlorides or sodium salts) and were applied as 2% solutions directly into the eye of normotensive or glaucomatous albino rabbits. Very strong intraocular pressure (IOP) lowering was observed for many of them for prolonged periods of 1-2 h, and the active drug was detected in eye tissues and fluids indicating that the antiglaucoma effect is due to CA inhibition within the eye.  相似文献   

4.
Reaction of TBDMS-protected bile acids (cholic, chenodeoxycholic, deoxycholic, lithocholic, ursodeoxycholic acids) or dehydrocholic acid with aromatic/heterocyclic sulfonamides possessing free amino/hydroxy moieties, in the presence of carbodiimides, afforded after deprotection of the OTBDMS ethers, a series of sulfonamides incorporating bile acid moieties in their molecules. Many such derivatives showed strong inhibitory properties against three isozymes of carbonic anhydrase (CA, EC 4.2.1.1), that is CA I, II and IV, zinc enzymes playing critical roles in many pathologies, and which represent interesting targets for developing diverse pharmacological agents. Some of the most active derivatives, incorporating 1,3,4-thiadiazole-2-sulfonamide or benzothiazole-2-sulfonamide functionalities in their molecules, showed low nanomolar affinity for CA II and CAIV. Furthermore, the bioavailability of these derivatives in rabbits is comparable to that of acetazolamide, being in the range of 85-90%, showing them as promising candidates for systemically acting CA inhibitors.  相似文献   

5.
The in vitro and in vivo inhibitory effects of 5-(3alpha, 12alpha-dihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3alpha, 7alpha, 12alpha-trihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3alpha, 7alpha, 12alpha-triacetoxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052 microM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.  相似文献   

6.
A new series of aromatic and heterocyclic sulfonamides, including six new derivatives, 2-(3-cyclohexene-1-carbamido)-1,3,4-thiadiazole-5-sulfonamide (CCTS), 4-(3-cyclohexene-1-carbamido) methyl-benzenesulfonamide (CCBS), 2-(9-octadecenoylamido)-1,3,4-thiadiazole-5-sulfonamide (ODTS), 2-(4,7,10-trioxa-tetradecanoylamido)-1,3,4-thiadiazole-5-sulfonamide (TDTS), 2-(coumarine-3-carbamido)-1,3,4-thiadiazole-5-sulfonamide (COTS) and 2-(8-methoxycoumarine-3-carbamido)-1,3,4-thiadiazole-5-sulfonamide (MCTS), has been investigated. These sulfonamides were assayed for inhibition of human carbonic anhydrase I (hCA-I) and human carbonic anhydrase II (hCA-II) which were purified by affinity chromatography.  相似文献   

7.
Pyrazole carboxylic acid amides of 5-amino-1,3,4-thiadiazole-2-sulfonamide were synthesized from 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonyl chloride and 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride. Carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from human erythrocyte cells by the affinity chromatography method. The inhibitory effects of 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 and new synthesized amides on these isozymes have been studied in vitro. The I(50) concentrations (the concentration of inhibitor producing a 50% inhibition of CA activity) against hydratase activity ranged from 1.2 to 2.2 nM for hCA-I and from 0.4 to 2 nM for hCA-II. The I(50) values against esterase activity ranged from 1.4 to 8 nM for hCA-I and from 1.3 to 6 nM for hCA-II. The K(i) values were observed between 8.2 x 10(- 5) to 6.2 x 10(- 4) M for hCA-I and between 2.9 x 10(- 4) to 8.2 x 10(- 4) M for hCA-II. The comparison of new synthesized amides to 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 indicated that the new synthesized compounds (18-23) inhibit CA activity more potently than the parent compounds.  相似文献   

8.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3alpha-Hydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3alpha,12alpha-Dihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3alpha,7alpha,12alpha-Trihydroxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3alpha,Acetoxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3alpha,7alpha,12alpha-Triacetoxy-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-beta-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I(50) values and K(i) constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 +/- 0.0274 mM, 0.0042 +/- 0.0009 mM, and 3.1446 +/- 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I(50) values and K(i) constants were 0.0471 mM and 0.0723 +/- 0.0388 mM for 1 and 0.0045 mM and 0.0061 +/- 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

9.
Inhibitory effects of three new derivatives of 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide on bovine carbonic anhydrase have been investigated. The new compounds are 2-(3-chloropropionylamino)-1,3,4-thiadiazole-5-sulfonamide, 2-(2,2-dichloroacetylamino)-1,3,4-thiadiazole-5-sulfonamide, and 2-(3-phenylpropionylamino)-1,3,4-thiadiazole-5-sulfonamide. The new compounds inhibit the esterase activity of carbonic anhydrase noncompetitively and have inhibition constants and I 50 values very similar to those for 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, the latter being clinically used in the treatment of glaucoma.  相似文献   

10.
Reaction of 3- and 4-carboxybenzenesulfonyl chloride with 5-amino-1,3,4-thiadiazole-2-sulfonamide/5-imino-4-methyl-delta(2)-1,3,4-thiadiazoline-2-sulfonamide afforded two series of benzolamide analogues to which the carboxyl moiety has been derivatized as esters or amides, in order to reduce their very polar character. The new derivatives showed low nanomolar affinity for three carbonic anhydrase (CA) isozymes, CA I, II and IV, and were effective as topical antiglaucoma agents in normotensive rabbits. Efficacy of several of the new sulfonamides reported was better than that of the standard drugs dorzolamide and brinzolamide, whereas their duration of action was prolonged as compared to that of the clinically used drugs.  相似文献   

11.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   

12.
Schiff's bases were obtained from aromatic/heterocyclic sulfonamides and amino-sulfonamide derivatives, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and 5-amino-1,3,4-thiadiazole-2-sulfonamide. Metal complexes of some of these Schiff's bases, incorporating Zn(II), Co(lI), Ni(II) and Cu(II) ions, were also prepared and tested as inhibitors of the zinc enzyme carbonic anhydrase (CA), and more specifically the red blood cell isozymes I and II. The Schiff's bases behaved as medium potency CA I and CA II inhibitors, whereas their metal complexes showed a highly enhanced potency, with several low nanomolar CA II inhibitors detected.  相似文献   

13.
The enzyme carbonic anhydrase (E.C. 4.2.1.1) has a stimulatory effect on glaucoma, an eye disease that has a risk to dogs, which are models for the human eye disease, that is similar to that in humans. In this study, some sulfonamide derivatives, 2-(3-cyclohexene-1-carbamido)-1,3,4-thiadiazole-5-sulfonamide (CCTS), 4-(3-cyclohexene-1-carbamido) methyl-benzenesulfonamide (CCBS), 2-(9-octadecenoylamido)-1,3,4-thiadiazole-5-sulfonamide (ODTS), 2-(4,7,10-trioxa-tetradecanoylamido)-1,3,4-thiadiazole-5-sulfonamide (TDTS), and 2-(8-methoxycoumarine-3-carbamido)-1,3,4-thiadiazole-5-sulfonamide (MCTS), as well as some anionic compounds (perchlorate and chloride) and existing medicines (dorzolamide-HCl, gentamicine sulphate, tropicamide, and procaine-HCl) were assayed for their inhibition of dog carbonic anhydrase (dCA), which was purified from erythrocytes on an affinity gel of L-tyrosine-sulfonamide-Sepharose 4B. ODTS showed the highest potency amongst the synthetic compounds with IC50 value 1.18 x 10(-5) M. Amongst the medicines tested, only dorzolamide showed inhibition with IC50 value 5.05 x 10(-4) M. Procaine and tropicamide actually showed an activatory effect, whereas gentamicine sulfate had no significant effect. The inhibitory effects of anionic compounds such as perchlorate and chloride were also investigated; whereas perchlorate showed inhibition, chloride did not.  相似文献   

14.
The enzyme carbonic anhydrase (E.C. 4.2.1.1) has a stimulatory effect on glaucoma, an eye disease that has a risk to dogs, which are models for the human eye disease, that is similar to that in humans.

In this study, some sulfonamide derivatives, 2-(3-cyclohexene-1-carbamido)-1,3,4-thiadiazole-5-sulfonamide (CCTS), 4-(3-cyclohexene-1-carbamido) methyl-benzenesulfonamide (CCBS), 2-(9-octadecenoylamido)-1,3,4-thiadiazole-5-sulfonamide (ODTS), 2-(4,7,10-trioxa-tetradecanoylamido)-1,3,4-thiadiazole-5-sulfonamide (TDTS), and 2-(8-methoxycoumarine-3-carbamido)-1,3,4-thiadiazole-5-sulfonamide (MCTS), as well as some anionic compounds (perchlorate and chloride) and existing medicines (dorzolamide-HCl, gentamicine sulphate, tropicamide, and procaine-HCl) were assayed for their inhibition of dog carbonic anhydrase (dCA), which was purified from erythrocytes on an affinity gel of L-tyrosine-sulfonamide-Sepharose 4B. ODTS showed the highest potency amongst the synthetic compounds with IC50 value 1.18 × 10? 5 M. Amongst the medicines tested, only dorzolamide showed inhibition with IC50 value 5.05 × 10? 4 M. Procaine and tropicamide actually showed an activatory effect, whereas gentamicine sulfate had no significant effect. The inhibitory effects of anionic compounds such as perchlorate and chloride were also investigated; whereas perchlorate showed inhibition, chloride did not.  相似文献   

15.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

16.
The in vitro and in vivo inhibitory effects of 5-(3α, 12α-dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α, 7α, 12α-trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α, 7α, 12α-triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3) and acetazolamide on rainbow trout (Oncorhynchus mykiss) (RT) erythrocyte carbonic anhydrase (CA) were investigated. The RT erythrocyte CA was obtained by affinity chromatography with a yield of 20.9%, a specific activity of 422.5?EU/mg protein and a purification of 222.4-fold. The purity of the enzyme was confirmed by SDS-PAGE. Inhibitory effects of the sulfonamides and acetazolamide on the RT erythrocyte CA were determined using the CO2-Hydratase method in vitro and in vivo studies. From in vitro studies, it was found that all the compounds inhibited CA. The obtained I50 value for the sulfonamides (1), (2) and (3) and acetazolamide were 0.83, 0.049, 0.82 and 0.052?μM, respectively. From in vivo studies, it was observed that CA was inhibited by the sulfonamides (1), (2) and (3) and acetazolamide.  相似文献   

17.
Pyrazole carboxylic acid amides of 5-amino-1,3,4-thiadiazole-2-sulfonamide were synthesized from 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonyl chloride and 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-1H-pyrazole-3-carbonyl chloride. Carbonic anhydrase isoenzymes (hCA-I and hCA-II) were purified from human erythrocyte cells by the affinity chromatography method. The inhibitory effects of 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 and new synthesized amides on these isozymes have been studied in vitro. The I50 concentrations (the concentration of inhibitor producing a 50% inhibition of CA activity) against hydratase activity ranged from 1.2 to 2.2 nM for hCA-I and from 0.4 to 2 nM for hCA-II. The I50 values against esterase activity ranged from 1.4 to 8 nM for hCA-I and from 1.3 to 6 nM for hCA-II. The Ki values were observed between 8.2·10? 5 to 6.2·10? 4 M for hCA-I and between 2.9·10? 4 to 8.2·10? 4 M for hCA-II. The comparison of new synthesized amides to 5-amino-1,3,4-thiadiazole-2-sulfonamide 1, acetazolamide 2 indicated that the new synthesized compounds (1823) inhibit CA activity more potently than the parent compounds.  相似文献   

18.
A series of sulfonamides has been obtained by reacting sulfanilamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide with omega-chloroalkanoyl chlorides, followed by replacement of the omega-chlorine atom with secondary amines. Tails incorporating heterocyclic amines belonging to the morpholine, piperidine and piperazine ring systems have been attached to these sulfonamides, by means of an alkanoyl-carboxamido linker containing from two to five carbon atoms. The new derivatives prepared in this way were tested as inhibitors of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic isozymes CA I and II, and the catalytic domain of the transmembrane, tumor-associated isozyme CA IX. Several low nanomolar CA I and CA II inhibitors were detected both in the aromatic and heterocyclic sulfonamide series, whereas the best hCA IX inhibitors (inhibition constants in the range of 22-35 nM) all belonged to the acetazolamide-like derivatives.  相似文献   

19.
The inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) with dithiothreitol, 2-mercaptoethanol, tris(carboxyethyl)phosphine (reducing agent frequently added to enzyme assay buffers) and threitol has been investigated. The agents were very weak inhibitors of isozymes CA II and CA IX, but unexpectedly, strongly influenced the binding of the low nanomolar sulfonamide inhibitor acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide). Acetazolamide affinity for all investigated CAs diminished orders of magnitude with increasing concentrations of these agents in the assay system. DTT and similar derivatives should not be added to the assay buffers used in monitoring CA activity/inhibition, as they lead to under-estimation of the binding constants, by a mechanism probably involving the formation of ternary complexes.  相似文献   

20.
2-N,N-Dimethylamino-1,3,4-thiadiazole-5-methanesulfonamide was tested for its interaction with the 12 catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isozymes, CA I-XIV. The compound is a potent inhibitor of CA IV, VII, IX, XII, and XIII (K(I)s of 0.61-39 nM), a medium potency inhibitor of CA II and VA (K(I)s of 121-438 nM), and a weak inhibitor against the other isoforms (CA III, VB, VI, and XIV), making it a very interesting candidate for situations in which a strong/selective inhibition of certain isozymes is needed. The crystal structure of the hCA II adduct of this sulfonamide revealed interesting interactions between the inhibitor and the enzyme which are quite different from those observed in the adducts of CA II with the structurally related aliphatic derivatives zonisamide, 2-amino-1,3,4-thiadiazolyl-5-difluoromethanesulfonamide, and 2-dimethylamino-5-[sulfonamido-(aminomethyl)]-1,3,4-thiadiazole reported earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号