首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A truncated naturally occurring variant of the human receptor P2X7 was identified in cancer cervical cells. The novel protein (P2X7-j), a polypeptide of 258 amino acids, lacks the entire intracellular carboxyl terminus, the second transmembrane domain, and the distal third of the extracellular loop of the full-length P2X7 receptor. The P2X7-j was expressed in the plasma membrane; it showed diminished ligand-binding and channel function capacities and failed to form pores and mediate apoptosis in response to treatment with the P2X7 receptor agonist benzoyl-ATP. The P2X7-j interacted with the full-length P2X7 in a manner suggesting heterooligomerization and blocked the P2X7-mediated actions. Interestingly, P2X7-j immunoreactivity and mRNA expression were similar in lysates of human cancer and normal cervical tissues, but full-length P2X7 immunoreactivity and mRNA expression were higher in normal than in cancer tissues, and cancer tissues lacked 205-kDa P2X7 immunoreactivity suggesting lack of P2X7 homo(tri)-oligomerization. These results identify a novel P2X7 variant with apoptosis-inhibitory actions, and demonstrate a distinct regulatory property for a truncated variant to antagonize its full-length counterpart through hetero-oligomerization. This may represent a general paradigm for regulation of a protein function by its variant.  相似文献   

2.
The synthesis and pharmacological evaluation of a new series of potent P2X(7) receptor antagonists is disclosed. The compounds inhibit BzATP-mediated pore formation in THP-1 cells. The distribution of the P2X(7) receptor in inflammatory cells, most notably the macrophage, mast cell and lymphocyte, suggests that P2X(7) antagonists have a significant role to play in the treatment of inflammatory disease.  相似文献   

3.
P2Z/P2X7 receptor-dependent apoptosis of dendritic cells   总被引:6,自引:0,他引:6  
Macrophages andthymocytes expressP2Z/P2X7nucleotide receptors that bind extracellular ATP. These receptors playa role in immune development and control of microbial infections, but their presence on dendritic cells has not been reported. Weinvestigated whether extracellular ATP could triggerP2Z/P2X7receptor-dependent apoptosis of dendritic cells. Apoptosis could beselectively triggered by tetrabasic ATP, since otherpurine/pyrimidine nucleotides were ineffective, and it wasmimicked by the P2Z receptoragonist, benzoylbenzoyl ATP, and blocked by magnesium and theirreversible antagonist, oxidized ATP. RT-PCR analysis confirmed themRNA expression of theP2Z/P2X7receptor and the absence of P2X1.Caspase inhibitors and cycloheximide had only a partial effect on theapoptosis, suggesting that a caspase-independent mechanism may also beoperative. Brief treatment with ATP led to an increase in theintracellular calcium concentration and permeabilization of the plasmamembrane to Lucifer yellow, which diffused throughout the dendriticcell cytosol. Other small extracellular molecules may thus attain a similar intracellular distribution, perhaps activating endogenous proteases that contribute to initiation of apoptosis.  相似文献   

4.
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.  相似文献   

5.
6.
Purinergic Signalling -  相似文献   

7.
The purinergic P2X7 receptor not only gates the opening of a cationic channel, but also couples to several downstream signaling events such as rapid membrane blebbing, microvesicle shedding, and interleukin-1beta release. Protein-protein interactions are likely to be involved in most of these signaling cascades; and recently, a P2X7 receptor-protein complex comprising at least 11 distinct proteins has been identified. We have studied one of these interacting proteins, HSP90, in human embryonic kidney cells expressing either human or rat P2X7 receptors as well as in rat peritoneal macrophages using biochemical (immunoprecipitation and Western blotting) and functional (membrane blebbing and currents) assays. We found that HSP90 was tyrosine-phosphorylated in association with the P2X7 receptor complex, but not in the cytosolic compartment. The HSP90 inhibitor geldanamycin decreased tyrosine phosphorylation of HSP90 and produced a 2-fold increase in the sensitivity of P2X7 receptors to agonist. Protein expression and tyrosine phosphorylation of a mutant P2X7 receptor in which a tyrosine in the C-terminal domain was substituted with phenylalanine (Y550F) were not changed, but tyrosine phosphorylation of HSP90 associated with this mutant P2X7 receptor complex was significantly greater than that associated with the wild-type complex. P2X7-Y550F receptors showed a 15-fold lower sensitivity to agonist, which was reversed by geldanamycin. We conclude that selective tyrosine phosphorylation of P2X7 receptor-associated HSP90 may act as a negative regulator of P2X7 receptor complex formation and function.  相似文献   

8.
P2X7受体是嘌呤受体中功能独特的一个亚型,为ATP控制的离子通道,在单核细胞、巨噬细胞、中性粒细胞中高表达,被ATP激活后导致K+外流和Ca^2+内流、非选择性膜孔形成,启动一系列信号途径如炎症小体NALP3的活化,丝裂原蛋白激酶途径激活NF-κB增强炎性细胞因子转录,ROS和氮介质的产生,介导IL-1β、IL-6、IL-18、TNF-α、MIP-2、CCL2、HMGB1等多种炎性细胞因子的释放,参与炎症的发生发展,与真菌感染及阿尔茨海默病、类风湿性关节炎、哮喘等炎症性疾病密切相关.  相似文献   

9.
10.
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X7 receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires “priming” of macrophages prior to ATP activation of the P2X7R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X7R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X7R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes.  相似文献   

11.
12.
Recently, one of the P2 purinergic receptors, the P2X7 receptor, has been extensively studied in nervous system and important functions have been revealed in both astrocytes and microglia. Stimulation of the receptors induces a sustained and nondesensitized increase in intracellular Ca2+ concentration ([Ca2+]i). In astrocytes purinergic receptors primarily regulate neurotransmission by inducing gliotransmitters release whereas in microglia the receptors stimulate the processing and release of proinflammation cytokines such as interleukin-1 and are thereby involved in inflammation and neurodegeneration. Thus, P2X7 receptors are considered not only to exert physiological functions but also mediate cell death. P2X7 receptors have also been identified in various cancer cells and in neuroblastoma cells. In these cells, the P2X7 receptor-mediated sustained Ca2+ signal is important in maintaining cellular viability and growth. Accordingly, these findings not only lead to a better understanding of roles of the receptor but also prompt the development of more potent, selective and safer P2X7 selective antagonists. These emerging antagonists bring new hope in the treatment of inflammatory-induced neurodegenerative diseases as well as neuroblastoma.  相似文献   

13.
Microglia, glial cells with an immunocompetent role in the CNS, react to stimuli from the surrounding environment with alterations of their phenotypic response. Amongst other activating signals, the endotoxin lipopolysaccharide (LPS) is widely used as a tool to mimic bacterial infection in the CNS. LPS-activated microglia undergo dramatic changes in cell morphology/activity; in particular, they stop proliferating and differentiate from resting to effector cells. Activated microglia also show modifications of purinoreceptor signalling with a significant decrease in P2X(7) expression. In this study, we demonstrate that the down-regulation of the P2X(7) receptor in activated microglia may play an important role in the antiproliferative effect of LPS. Indeed, chronic blockade of the P2X(7) receptor by antagonists (oxidized ATP, KN62 and Brilliant Blue G), or treatment with the ATP-hydrolase apyrase, severely decreases microglial proliferation, down-regulation of P2X(7) receptor expression by small RNA interference (siRNA) decreases cell proliferation, and the proliferation of P2X(7)-deficient N9 clones and primary microglia, in which P2X(7) expression is down-regulated by siRNA, is unaffected by either LPS or P2X(7) antagonists. Furthermore, flow cytometric analysis indicates that exposure to oxidized ATP or treatment with LPS reversibly decreases cell cycle progression, without increasing the percentage of apoptotic cells. Overall, our data show that the P2X(7) receptor plays an important role in controlling microglial proliferation by supporting cell cycle progression.  相似文献   

14.
The ATP-activated P2X7 receptor channel is involved in immune function and inflammatory pain and represents an important drug target. Here we describe a new P2X7 splice variant (P2X7(k)), containing an alternative intracellular N terminus and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene. Whole cell patch clamp recordings of the rat isoform expressed in HEK293 cells revealed an 8-fold higher sensitivity to the agonist Bz-ATP and much slower deactivation kinetics when compared with the P2X7(a) receptor. Permeability measurements in Xenopus oocytes show a high permeability for N-methyl-d-glucamine immediately upon activation, suggesting that the P2X7(k) channel is constitutively dilated upon opening. The rates of agonist-induced dye uptake and membrane blebbing in HEK cells were also increased. PCR analyses and biochemical analysis by SDS-PAGE and BN-PAGE indicate that the P2X7(k) variant escapes gene deletion in one of the available P2X7−/− mice strains and is strongly expressed in the spleen. Taken together, we describe a novel P2X7 isoform with distinct functional properties that contributes to the diversity of P2X7 receptor signaling. Its presence in one of the P2X7−/− strains has important implications for our understanding of the role of this receptor in health and disease.P2X receptors (P2XRs)3 are ATP-gated cation channels. They consist of three subunits (1, 2) each containing two transmembrane domains (TMDs) linked by an extracellular ligand-binding domain (3). The P2X7 receptor is distinguished from other P2X receptors by its long intracellular C terminus, a low ATP sensitivity (EC50: 100 μm to 1 mm), and its ability to induce “cell permeabilization,” meaning that upon prolonged ATP application the opening of a permeation pathway for large molecules is induced. This process eventually leads to apoptosis, requires the C terminus (36), and may be mediated by interaction with pannexin hemichannels (7). In addition, “pore dilation,” which allows the passage of the large cation NMDG, is observed if extracellular sodium is replaced by NMDG (8), a property also displayed by the P2X2 (9) and P2X4 (10) receptors. This pore dilation is assumed to represent an intrinsic property of these P2X receptors (11, 12), although it can be influenced by interaction with intracellular proteins (13). However, both processes are still poorly understood.P2X7 receptors are found on cells of the hematopoietic lineage, in epithelia, and endothelia. Several studies report its expression and/or function in neurons, although its presence here is under debate (14, 15). So far, nine splice variants (P2X7(b) through P2X7(j)) have been described, only one of which was shown to be, at least partially, functional (16, 17). In addition, numerous single nucleotide polymorphisms have been identified in the human P2X7 receptor. Some of these have been found to cause either gain or loss of function and have been associated with chronic lymphocytic leukemia, bone fracture risk, and impaired immune functions (1820). Recent genetic studies indicate an association between the Gln-460 → Arg polymorphism and familial depressive disorders (21).Two P2X7-deficient mouse lines have been described. In the mouse line generated by Glaxo, the P2rx7 gene was knocked out by insertion of a lacZ transgene into exon 1 (22). In the mouse line generated by Pfizer (23) a neomycin cassette was inserted into exon 13, replacing a region that encodes Cys-506–Pro-532 of the intracellular C terminus of the receptor. The Pfizer P2X7 KO mice demonstrated the involvement of this receptor in bone formation (24), cytokine production, and inflammation (23, 25) while the Glaxo−/− mice established its role in inflammatory and neuropathic pain (26). All these findings and multiple subsequent studies based on these mouse models defined the P2X7R as a promising target for the development of innovative therapeutic strategies, and selective P2X7 inhibitors are already in clinical trials for the treatment of rheumatoid arthritis (27).Here, we describe a novel P2X7 isoform with an alternative N terminus and TMD 1. Compared with the originally identified P2X7(a) variant, it has increased agonist sensitivity and a higher propensity to form NMDG-permeable pores and permit dye uptake. Due to a novel alternative exon 1 and translation start, this splice variant escapes inactivation in the Glaxo P2X7−/− mice and thus could account for possible inconsistencies between results obtained with different P2X7−/− mouse lines (28).  相似文献   

15.
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.  相似文献   

16.
The P2 purinergic receptor family implicated in many physiological processes, including neurotransmission, mechanical adaptation and inflammation, consists of ATP-gated non-specific cation channels P2XRs and G-protein coupled receptors P2YRs. Different cells, including bone forming osteoblasts, express multiple P2 receptors; however, how P2X and P2Y receptors interact in generating cellular responses to various doses of [ATP] remains poorly understood. Using primary bone marrow and compact bone derived osteoblasts and BMP2-expressing C2C12 osteoblastic cells, we demonstrated conserved features in the P2-mediated Ca2+ responses to ATP, including a transition of Ca2+ response signatures from transient at low [ATP] to oscillatory at moderate [ATP], and back to transient at high [ATP], and a non-monotonic changes in the response magnitudes which exhibited two troughs at 10−4 and 10−2 M [ATP]. We identified P2Y2 and P2X7 receptors as predominantly contributing to these responses and constructed a mathematical model of P2Y2R-induced inositol trisphosphate (IP3) mediated Ca2+ release coupled to a Markov model of P2X7R dynamics to study this system. Model predictions were validated using parental and CRISPR/Cas9-generated P2Y2 and P2Y7 knockouts in osteoblastic C2C12-BMP cells. Activation of P2Y2 by progressively increasing [ATP] induced a transition from transient to oscillatory to transient Ca2+ responses due to the biphasic nature of IP3Rs and the interaction of SERCA pumps with IP3Rs. At high [ATP], activation of P2X7R modulated the response magnitudes through an interplay between the biphasic nature of IP3Rs and the desensitization kinetics of P2X7Rs. Moreover, we found that P2Y2 activity may alter the kinetics of P2X7 towards favouring naïve state activation. Finally, we demonstrated the functional consequences of lacking P2Y2 or P2X7 in osteoblast mechanotransduction. This study thus provides important insights into the biophysical mechanisms underlying ATP-dependent Ca2+ response signatures, which are important in mediating bone mechanoadaptation.  相似文献   

17.
The purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP) ligand-gated cationic channel receptor. P2X7R is closely associated with various inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders. P2X7R is an interesting therapeutic target as well as molecular imaging target. This brief digest highlights the radioligands targeting P2X7R recently developed in drug discovery and molecular imaging agent development.  相似文献   

18.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

19.
Purinergic Signalling -  相似文献   

20.
P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号