首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we describe the synthesis and structure–activity relationship (SAR) of a series of isoquinoline chemoattractant receptor–homologous molecule expressed on Th2 cells (CRTH2) antagonists. TASP0376377 (15-20), one of the most potent compounds, showed a potent binding affinity (IC50 = 19 nM) in addition to the excellent functional antagonist activity (IC50 = 13 nM). Moreover, the efficacy of this compound in a chemotaxis assay (IC50 = 23 nM) was in good agreement with its potency as a CRTH2 antagonist. In addition, 15-20 exhibited greater selectivity in binding to CRTH2 than to the DP1 prostanoid receptor (IC50 >1 μM) or the enzymes COX-1 and COX-2 (IC50 >10 μM).  相似文献   

2.
5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC50 (1b) < 10 nM; IC50 (1a) < 25 nM, EC50 (1b) = 16 nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F = 24%).  相似文献   

3.
Spirocyclopropane- and spiroazetidine-substituted tetracycles 13DE and 16A are described as orally active MK2 inhibitors. The spiroazetidine derivatives are potent MK2 inhibitors with IC50 <3 nM and inhibit the release of TNFα (IC50<0.3 μM) from hPBMCs and hsp27 phosphorylation in anisomycin stimulated THP-1 cells. The spirocyclopropane analogues are less potent against MK2 (IC50 = 0.05–0.23 μM), less potent in cells (IC50 <1.1 μM), but show good oral absorption. Compound 13E (100 mg/kg po; bid) showed oral activity in rAIA and mCIA, with significant reduction of swelling and histological score.  相似文献   

4.
We have described the synthesis, enzyme inhibitory activity, structure–activity relationships, and proposed binding mode of a novel series of pyrrole derivatives as lymphocyte-specific kinase (Lck) inhibitors. The most potent analogs exhibited good enzyme inhibitory activity (IC50s <10 nM) for Lck kinase inhibition.  相似文献   

5.
A series of 3,6-disubstituted dihydropyrones were identified as inhibitors of human lactate dehydrogenase (LDH)-A. Structure activity relationships were explored and a series of 6,6-spiro analogs led to improvements in LDHA potency (IC50 <350 nM). An X-ray crystal structure of an improved compound bound to human LDHA was obtained and it illustrated additional opportunities to enhance the potency of these compounds, resulting in the identification of 51 (IC50 = 30 nM).  相似文献   

6.
Potent nicotinamide phosphoribosyltransferase (NAMPT) inhibitors containing 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas were identified using structure-based design techniques. The new compounds displayed improved aqueous solubilities, determined using a high-throughput solubility assessment, relative to previously disclosed urea and amide-containing NAMPT inhibitors. An optimized 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived compound exhibited potent anti-NAMPT activity (18; BC NAMPT IC50 = 11 nM; PC-3 antiproliferative IC50 = 36 nM), satisfactory mouse PK properties, and was efficacious in a PC-3 mouse xenograft model. The crystal structure of another optimized compound (29; NAMPT IC50 = 10 nM; A2780 antiproliferative IC50 = 7 nM) in complex with the NAMPT protein was also determined.  相似文献   

7.
A novel series of substituted benzoylguanidine derivatives were designed and synthesized as potent NHE1 inhibitors. Most compounds can significantly inhibit NHE1-mediated platelet swelling in a concentration-dependent manner, among which compound 5f (IC50 = 3.60 nM) and 5l (IC50 = 4.48 nM) are 18 and 14 times respectively more potent than cariporide (IC50 = 65.0 nM). Furthermore, when tested in vivo and in vitro, compound 5f showed superior cardioprotective effects against SD rat myocardial ischemic-reperfusion injury over cariporide, representing a promising lead compound for further exploration.  相似文献   

8.
This Letter describes the lead discovery, optimization, and biological characterization of a series of substituted 4-amino-1H-pyrazolo[3,4-d]pyrimidines as potent inhibitors of IGF1R, EGFR, and ErbB2. The leading compound 11 showed an IGF1R IC50 of 12 nM, an EGFR (L858R) IC50 of 31 nM, and an ErbB2 IC50 of 11 nM, potent activity in cellular functional and anti-proliferation assays, as well as activity in an in vivo pharmacodynamic assay.  相似文献   

9.
A series of novel non-covalent piperidine-containing dipeptidyl derivatives were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were tested for their proteasome chymotrypsin-like inhibitory activities, and selected derivatives were evaluated for the anti-proliferation activities against two multiple myeloma (MM) cell lines RPMI 8226 and MM-1S. Among all of these compounds, eight exhibited significant proteasome inhibitory activities with IC50 less than 20 nM, and four are more potent than the positive control Carfilzomib. Compound 28 displayed the most potent proteasome inhibitory activity (IC50: 1.4 ± 0.1 nM) and cytotoxicities with IC50 values at 13.9 ± 1.8 nM and 9.5 ± 0.5 nM against RPMI 8226 and MM-1S, respectively. Additionally, the ex vivo blood cell proteasome inhibitory activities of compounds 24 and 2729 demonstrated that the enzymatic metabolism in the whole blood could be well tolerated. All these experiments confirmed that the piperidine-containing non-covalent proteasome inhibitors are potential leads for exploring new anti-cancer drugs.  相似文献   

10.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

11.
Cyclin dependent kinase 5 (CDK5) is a serine/threonine kinase belonging to the cyclin dependent kinase (CDK) family. CDK5 is involved in numerous neuronal diseases (including Alzheimer’s or Parkinson’s diseases, stroke, traumatic brain injury), pain signaling and cell migration. In the present Letter, we describe syntheses and biological evaluations of new 2,6,9-trisubstituted purines, structurally related to roscovitine, a promising CDK inhibitor currently in clinical trials (CDK1/Cyclin B, IC50 = 350 nM; CDK5/p25, IC50 = 200 nM). These new molecules were synthesized using an original Buchwald–Hartwig catalytic procedure; several compounds (3j, 3k, 3l, 3e, 4k, 6b, 6c) displayed potent kinase inhibitory potencies against CDK5 (IC50 values ranging from 17 to 50 nM) and showed significant cell death inducing activities (IC50 values ranging from 2 to 9 μM on SH-SY5Y). The docking of the inhibitors into the ATP binding domain of the CDK5 catalytic site highlighted the discriminatory effect of a hydrogen bond involving the CDK5 Lys-89. In addition, the calculated final energy balances for complexation measured for several inhibitors is consistent with the ranking of the IC50 values. Lastly, we observed that several compounds exhibit submicromolar activities against DYRK1A (dual specificity, tyrosine phosphorylation regulated kinase 1A), a kinase involved in Down syndrome and Alzheimer’s disease (3g, 3h, 4m; IC50 values ranging from 300 to 400 nM).  相似文献   

12.
The role of all-trans-retinoic acid (ATRA) in the development and maintenance of many epithelial and neural tissues has raised great interest in the potential of ATRA and related compounds (retinoids) as pharmacological agents, particularly for the treatment of cancer, skin, neurodegenerative and autoimmune diseases. The use of ATRA or prodrugs as pharmacological agents is limited by a short half-life in vivo resulting from the activity of specific ATRA hydroxylases, CYP26 enzymes, induced by ATRA in liver and target tissues. For this reason retinoic acid metabolism blocking agents (RAMBAs) have been developed for treating cancer and a wide range of other diseases.The synthesis, CYP26A1 inhibitory activity and molecular modeling studies of novel methyl 3-[4-(arylamino)phenyl]-3-(azole)-2,2-dimethylpropanoates are presented. From this series of compounds clear SAR can be derived for 4-substitution of the phenyl ring with electron-donating groups more favourable for inhibitory activity. Both the methylenedioxyphenyl imidazole (17, IC50 = 8 nM) and triazole (18, IC50 = 6.7 nM) derivatives were potent inhibitors with additional binding interactions between the methylenedioxy moiety and the CYP26 active site likely to be the main factor. The 6-bromo-3-pyridine imidazole 15 (IC50 = 5.7 nM) was the most active from this series compared with the standards liarozole (IC50 = 540 nM) and R116010 (IC50 = 10 nM).  相似文献   

13.
2-Phenyl-4-piperidinyl-6,7-dihydrothieno[3,4-d]pyrimidine derivative (2) was found to be a new PDE4 inhibitor with moderate PDE4B activity (IC50 = 150 nM). A number of derivatives with a variety of 4-amino substituents and fused bicyclic pyrimidines were synthesized. Among these, 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivative (18) showed potent PDE4B inhibitory activity (IC50 = 25 nM). Finally, N-propylacetamide derivative (31b) was determined as a potent inhibitor for both PDE4B (IC50 = 7.5 nM) and TNF-α production in mouse splenocytes (IC50 = 9.8 nM) and showed good in vivo anti-inflammatory activity in the LPS-induced lung inflammation model in mice (ID50 = 18 mg/kg). The binding mode of the new inhibitor (31e) in the catalytic site of PDE4B is presented based on an X-ray crystal structure of the ligand–enzyme complex.  相似文献   

14.
A series of (1H-benzo[d][1,2,3]triazol-1-yl)(4-benzylpiperazin-1-yl)methanones and of (1H-benzo[d][1,2,3]triazol-1-yl)(4-phenylpiperazin-1-yl)methanones has been prepared and tested on human fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). In the benzylpiperazinyl series, compound 29 (ML30) exhibited an IC50 value of 0.54 nM on MAGL, combined with a 1000-fold selectivity versus FAAH, while compounds 11 and 16 acted as potent dual FAAH-MAGL inhibitors (IC50 <10 nM). In the phenylpiperazinyl series, compounds 37, 38, 42, and 43 displayed IC50 values against MAGL in the nanomolar range, whilst being between one and two orders of magnitude less potent on the FAAH, while compounds 31 and 32 were potent FAAH inhibitors (IC50 <20 nM) and over 12-fold selective versus MAGL. The key structural determinants driving the structure–activity relationships were explored by the minimization of the inhibitors inside the active site of both enzymes.  相似文献   

15.
Basic lipophilic substituents dramatically improved the cellular potency of a previously disclosed series of pyrazole-based arylalkyne cathepsin S inhibitors. The incorporation of substituted benzylamines in the para position of the arylalkyne maintained enzymatic activity (hCatS IC50 = 80–420 nM) and imparted cellular potency (IC50 = 0.8–4.0 μM). Further refinement of the morpholine portion of the pharmacophore enabled the identification of bicyclic piperidines with enhanced affinity for CatS (IC50 = 10–30 nM) and sub-micromolar cellular potency (JY Ii IC50 = 200–720 nM).  相似文献   

16.
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as 1H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50 < 10 μM. The highest inhibitory activity (IC50 = 5.12 μM for AChE and IC50 = 8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure–activity relationship was discussed.  相似文献   

17.
A series of trisubstituted cyclohexanes was designed, synthesized and evaluated as CC chemokine receptor 2 (CCR2) antagonists. This led to the identification of two distinct substitution patterns about the cyclohexane ring as potent and selective CCR2 antagonists. Compound 36 exhibited excellent binding (CCR2 IC50 = 2.4 nM) and functional antagonism (calcium flux IC50 = 2.0 nM and chemotaxis IC50 = 5.1 nM).  相似文献   

18.
The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC50 values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC50 = 114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC50 = 280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.  相似文献   

19.
CXCR4 dimerization has been widely demonstrated both biologically and structurally. This paper mainly focused on the development of structure-based dimeric ligands that target CXCL12–CXCR4 interaction and signaling. This study presents the design and synthesis of a series of [PEG]n linked dimeric ligands of CXCR4 based on the knowledge of the homodimeric crystal structure of CXCR4 and our well established platform of chemistry and bioassays for CXCR4. These new ligands include [PEG]n linked homodimeric or heterodimeric peptides consisting of either two DV3-derived moieties (where DV3 is an all-d-amino acid analog of N-terminal modules of 1–10 (V3) residues of vMIP-II) or hybrids of DV3 moieties and CXCL1218. Among a total of 24 peptide ligands, four antagonists and three agonists showed good CXCR4 binding affinity, with IC50 values of <50 nM and <800 nM, respectively. Chemotaxis and calcium mobilization assays with SUP-T1 cells further identified two promising lead modulators of CXCR4: ligand 4, a [PEG3]2 linked homodimeric DV3, was an effective CXCR4 antagonist (IC50 = 22 nM); and ligand 21, a [PEG3]2 linked heterodimeric DV3–CXCL1218, was an effective CXCR4 agonist (IC50 = 407 nM). These dimeric CXCR4 modulators represent new molecular probes and therapeutics that effectively modulate CXCL12–CXCR4 interaction and function.  相似文献   

20.
We aimed to discover a novel type of transient receptor potential vanilloid 1 (TRPV1) antagonist because such antagonists are possible drug candidates for treating various disorders. We modified the structure of hit compound 7 (human TRPV1 IC50 = 411 nM) and converted its pyrrolidino group to a (hydroxyethyl)methylamino group, which substantially improved inhibitory activity (15d; human TRPV1 IC50 = 33 nM). In addition, 15d ameliorated bladder overactivity in rats in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号