首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The efficient synthesis of new bis-substituted nitro-amidino, amino-amidino (10a, 10b13a, 13b) and previously prepared diamidino 2-phenyl-benzothiazoles (9a, 9b) is described. The compounds 11a and 11b were prepared by recently developed methodology of the key precursors in zwitterionic form 8a and 8b with 4-nitrobenzoylchloride in a very good yield (70%). All compounds except diamidino-substituted 2-phenylbenzothiazole 9a show exceptionally prominent tumor cell-growth inhibitory activity and cytotoxicity, whereby the special selectivity of amino-amidine 2-phenylbenzothiazole 12a towards MCF-7 and H 460 cells makes this compound a prospective lead compound that should be further evaluated in animal models. All in vivo tested compounds (12a, 12b, 13a and 13b) are absorbed from mice gastrointestinal system. LD50 are between 67.33 and 696.2 mg/kg body weight (OECD/EPA toxicity categories 2–3).  相似文献   

2.
A novel series of pyrazoline amidoxime (2ad) and pyrazoly-1,2,4-oxadiazole (3ap) and (4) of pharmacological significance have been synthesised. Structures of newly synthesised compounds were characterized by spectral studies. New compounds were screened for their in vitro antioxidant, antimicrobial and antiinflammatory activities. Among the synthesized compounds, compound 2a, 3l and 3o were found to be active antimicrobial agents in addition to having potent antioxidant activity, while the compound 3f showed promising antiinflammatory activity in comparison with standard drug.  相似文献   

3.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   

4.
A series of ethyl 1H-indole-3-carboxylates 9a16 and 9b12 were prepared and evaluated in Huh-7.5 cells. Most of the compounds exhibited anti-hepatitis C virus (HCV) activities at low concentration. The selectivity indices of inhibition on entry and replication of compounds 9a2 (>10; >16.7) and 9b1 (>6.25; >16.7) were higher than those of the other evaluated compounds, including the lead compound Arbidol (ARB, 6; 15). Moreover, the selective index of inhibition on entry of compound 9a3 (>6.25) was higher than that of ARB (6). Of these three initial hits, compound 9a2 was the most potent.  相似文献   

5.
In our effort to explore the potential of ACC1-selective inhibitor as in vivo probe molecule, a series of 1,3-benzoxazole derivatives was synthesized. Previously, we reported a series of novel bicyclic and monocyclic ACC1-selective inhibitors. Among them, compound 1a exhibited highly potent cellular activity (acetate uptake IC50 = 0.76 nM) as well as promising in vivo PD efficacy. However, compound 1a caused severe body weight reduction in repeated dose administration in the mouse model. Since 1a showed potent inhibitory activity against mouse ACC1 as well as strong inhibition of mouse ACC2, we further examined a series of 1a analogues in order to reduce undesirable body weight change. The replacement of acetamide moiety with ureido moiety dramatically improved selectivity of mouse ACC1 against ACC2. In addition, analogue 1b displayed favorable bioavailability in mouse cassette dosing PK study, hence in vivo PD studies were also carried out. Oral administration of 1b significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Furthermore, compound 1b showed significant antitumor efficacy in 786-O xenograft mice at an oral dose of 30 mg/kg (T/C = 0.5%). Accordingly, our novel potent ACC1-selective inhibitor represents a set of useful orally-available research tools, as well as potential therapeutic agents particularly in terms of new cancer therapies.  相似文献   

6.
In the search for new potential hypolipidemic agents, the present study focused on the synthesis of 2-acyl phenols (6ac and 7ac) and their saturated side-chain alkyl phenols (4ac and 5ac), and on the evaluation of their hypolipidemic activity using a murine Tyloxapol-induced hyperlipidemic protocol. The whole series of compounds 47 greatly and significantly reduced elevated serum levels of total cholesterol, LDL-cholesterol, and triglycerides, with series 6 and 7 showing the greatest potency ever found in our laboratory. At the minimum dose (25 mg/kg/day), the latter compounds lowered cholesterol by 68–81%, LDL by 72–86%, and triglycerides by 59–80%. This represents a comparable performance than that shown by simvastatin. Experimental evidence and docking studies suggest that the activity of these derivatives is associated with the inhibition of HMG-CoA reductase.  相似文献   

7.
A series of substituted benzimidazole derivatives were synthesized by reacting O-phenylenediamine with various aromatic aldehydes or glycolic acid using various inexpensive reagents in aqueous media. Synthesized compounds were characterized and elucidated by IR, 1H NMR, ESI-MS spectra. Resultant compounds were screened for in vitro antimicrobial, cytotoxic, antioxidant, lipid peroxidation and cholinesterase inhibitory activities, in vivo analgesic and anti-inflammatory, and in silico anti-acetylcholinesterase and anti-butyrylcholinesterase activities. Among the synthesized compounds, compound 3b showed most promising central analgesic effect (46.15%) compared to morphine (48.08%), whereas compounds 6, 3c and 3a showed significant peripheral analgesic activity at two different dose levels (25 mg/kg and 50 mg/kg). Compounds 3b and 3a at the dose of 100 mg/kg showed significant anti-inflammatory effects from the first hour and onward, whereas compounds 6 and 3b showed moderate cytotoxic activities. In addition, compound 3a showed significant antioxidant activity having IC50 value of 16.73 µg/ml compared to 14.44 µg/ml for the standard BHT. Compound 6, 3a and 3b exhibited mild to moderate cholinesterase inhibitory activity. In silico studies revealed that compound 3a and 3b might be suitable for cholinesterase inhibitory activity. A comprehensive computational and experimental data suggested compounds 3b and 3a as the best possible candidates for pharmacological activity. All the experimental data were statistically significant (p < 0.01 level).  相似文献   

8.
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.  相似文献   

9.
Spiroindoline urea derivatives, designed to act as NPY Y5 receptor antagonists, were synthesized and their structure–activity relationships were investigated. Of these derivatives, compound 3a showed good Y5 binding affinity with favorable pharmacokinetic properties. Compound 3a significantly inhibited bPP Y5 agonist-induced food intake in rats, and suppressed body weight gain in DIO mice.  相似文献   

10.
Two new monoterpene acylglucosides (12) and one new aromatic glycoside (3), together with five known compounds (48), were isolated from 95% ethanol extract of Sibiraea angustata. The structures of these compounds were characterized by 2D-NMR and mass spectrometry. Compounds were evaluated for their hypolipidemic activity using oleic acid-induced lipid accumulation in HepG2 cells. RT-PCR analysis revealed that compound 5 could decrease the expression level of fatty acid synthase (FASN). Lipidomics analysis indicated that compound 5 significantly decreased the levels of 11 lipids in oleic acid-induced lipid accumulation, including triglycerides (TG), diglycerides (DG), phosphatidylcholines (PC) and 1-acyl-sn-glycero-3-phosphocholines (lysoPC). These data demonstrated that terpene acylglucosides are the major active constituents in Sibiraea angustata.  相似文献   

11.
We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50?=?0.039?nM vs. 0.069?nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50?=?0.25?nM and 0.26?nM vs. 0.11?nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d15f and oxadiazole compounds 24a24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50?=?0.14?μM and 0.05?μM vs. 8.98?μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.  相似文献   

12.
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3aj) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5?h of carrageenan injection at the 30?mg?kg?1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.  相似文献   

13.
New thiophene and annulated thiophene pyrazole hybrids were synthesized and screened for their in vitro COX-1/COX-2 enzymatic inhibition and in vivo anti-inflammatory activities. All compounds were more COX-2 selective inhibitors than COX-1 with compound 13 exhibiting the highest COX-2 selectivity index. Compounds 3, 6a, 9 and 11 were the most promising in the acute anti-inflammatory assay while compounds 3, 5, 6a, 6c, 9, 10, 11 and 13 exerted promising anti-inflammatory activity in the sub-acute anti-inflammatory assay. Compounds 3, 6a, 6c, 9, 10 and 11 were evaluated for their ED50 values and were more potent than diclofenac sodium while compounds 6a, 6c and 9 were of greater potency than celecoxib with compound 6a being the most potent showing ED50 = 0.033 mmol/kg. These compounds were non-toxic and proved to be gastrointestinal safe compared to indomethacin, diclofenac sodium and celecoxib. Docking studies into COX-2 active site (PDB code 3LN1) revealed that compounds 3, 6a, 6c, 9, 10, 11 and 13 had binding modes and energies comparable to that of celecoxib. Compounds 3, 9, 10 and 11 complied with Lipinski’s RO5 while compounds 6a and 6c showed one violation whereas compound 13 deviated by 2 violations. Compounds 6a, 6c and 13 showed 100% plasma protein binding (PPB) and showed no aqueous solubility while compounds 3, 10 and 11 demonstrated the best drug likeness model scores. Therefore, the thiophene analog 3 and the thienopyrimidine derivatives 10 and 11 are promising anti-inflammatory candidates that exert moderate selective COX-2 inhibition with acceptable physicochemical properties.  相似文献   

14.
Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.  相似文献   

15.
4-Substituted-pyrido[2,3-d]pyrimidin-4(1H)-ones 4ac were synthesized by oxidation of 4-substituted-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones 3ac which were in turn prepared from arylidenemalononitriles 1ac and 6-aminothiouracil 2. The reactivity of compounds 4ac towards some reagents such as formamide, carbon disulfide, urea, thiourea, formic and acetic acids were studied. All the synthesized compounds were characterized by spectroscopic means and elemental analysis. Compound 4c exhibited 64% and 72% analgesic activity. Also, compound 4b showed 50% and 65% anti-inflammatory activity. Interestingly these compounds showed one-third of ulcer index of the reference aspirin and diclofenac.  相似文献   

16.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

17.
A series of novel 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs were designed and synthesized for developing pyrazinoindolone scaffolds as anti-breast cancer agents. Compounds 1h and 1i, having a furan-2-yl-methylamide and benzylamide group, respectively, exhibited more potent cytotoxicity in MDA-MB-468 triple-negative breast cancer (TNBC) cells than compounds possessing aliphatic groups. Compounds 2a and 2b, as (R)-enantiomers of 1h and 1i, also had inhibitory activity against MDA-MB-468 cells. Moreover, analogs (3ab and 3de) bearing a benzyl group at the N-2 position showed more potent activity than gefitinib, as a potent EFGR-TK inhibitor. Especially, compound 3a exhibited selective cytotoxic activity against MDA-MB-468 cells; it also had a synergistic effect in combination with gefitinib against MDA-MB-468 cells. In addition, we confirmed that compounds 3a and 3d inhibit phosphorylation of Akt in MDA-MB-468 cells using western blot analysis. Therefore, these 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs may be helpful for investigating new anti-TNBC agents.  相似文献   

18.
A series of bis-benzimidazole diamidine compounds containing different central linkers has been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Seven compounds have shown potent antibacterial activities. The anti-MRSA and anti-VRE activities of compound 1h were more potent than that of the lead compound 1a and vancomycin.  相似文献   

19.
Chalcones have been identified as interesting compounds with cytotoxicity, anti-inflammatory and antioxidant properties. In the present study, simple methoxychalcones were synthesized by Claisen–Schmidt condensation reaction and evaluated for above biological activities. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. The data revealed that compound 3s (99–100% at 10 μM concentration) completely inhibit the selected five human cancer cell lines as compared to standard flavopiridol and gemcitabine (70–90% at 700 nM and 500 nM concentrations, respectively), followed by 3a, 3n, 3o, 3p, 3q, 3r. Among the tested compounds 3l, 3m, 3r, and 3s exhibited promising anti-inflammatory activity against TNF-α and IL-6 with 90–100% inhibition at 10 μM concentration. DPPH free radical scavenging activity was given by the compounds 3o, 3n, 3l, 3r, 3m, 3a, 3p, 3c and 3s at 1 mM concentration. Overall, 3s was obtained as lead compound with promising anticancer, anti-inflammatory and antioxidant activities. Bioavailability of compounds were checked by in vitro cytotoxicity study and confirmed to be nontoxic. The structure activity relationship (SAR) and in silico drug relevant properties (HBDs, HBAs, PSA, c Log P, ionization potential, molecular weight, EHOMO and ELUMO) further confirmed that the compounds were potential candidates for future drug discovery study.  相似文献   

20.
Two novel series of N-2,3-bis(6-substituted-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)naphthalene-1,4-diones 3a-d and substituted N-(methyl/ethyl)bisquinolinone triethyl-ammonium salts 4e,f were successfully synthesized. The synthesized compounds were targeted as new candidates to extracellular signal-regulated kinases 1/2 (ERK1/2) with considerable antineoplastic activity. The synthesis involved the reactions of 2 equivalents of 4-hydroxy-2(1H)-quinolinones 1a-f and one equivalent of 1,4-naphthoquinone (2) in a mixture of ethanol/dimethylformamide (1:1) as a solvent and 0.5 mL Et3N. In the reaction of 6-methyl-4-hydroxyquinolone 1b with 2, a side product 4b of the second series was obtained. In general, the presence of free NH-quinolone gave a single compound of the first series, whereas reaction of N-methyl/ethyl-quinolones 1e,f with 2 enhanced the formation of compounds of the second series. The structures of the new compounds were proved by different spectroscopic techniques such as IR, NMR (2D-NMR) and mass spectra, elemental analysis, and X-ray crystallography. To further elucidate the mechanism of action of these newly synthesized compounds, compounds 3a, 3b, 4e and 4f were selected to investigate for their MAP Kinases pathway inhibition together with molecular docking using ATP-binding site of ERK2. The results revealed that compounds 3a, 3b and 4f inhibited ETS-1 phosphorylation by ERK2 in a dose dependent manner. Also, compound 4f showed highest potency for ERK2 inhibition with ATP-competitive inhibition mechanism which was confirmed by the formation of three hydrogen bond in the molecular docking studies. The synthesized compounds were then tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Interestingly, the selected compounds displayed from modest to strong cytotoxic activities. Compound 3b demonstrated broad spectrum anti-tumor activity against the nine tumor sub-panels tested, while compound 3d proved to be lethal to most of the cancer cell lines as shown by their promising GI50 and TGI values in NCI in vitro five dose testing. These results revealed that the synthesized compounds can potentially serve as leads for the development of novel chemotherapeutic agents and structure improvement will be necessary for some derivatives for enhancing their cellular activities and pharmacokinetic profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号