首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of selective HCV NS5B RNA dependent RNA polymerase inhibitors has been disclosed. These compounds contain an appropriately substituted tetrahydrobenzothiophene scaffold. This communication will detail the SAR and activities of this series.  相似文献   

2.
Chronic hepatitis C virus (HCV) infections are a significant medical problem worldwide. The NS5B Polymerase of HCV plays a central role in virus replication and is a prime target for the discovery of new treatment options. We recently disclosed 1H-benzo[de]isoquinoline-1,3(2H)-diones as allosteric inhibitors of NS5B Polymerase. Structural and SAR information guided us in the modification of the core structure leading to new templates with improved activity and toxicity/activity window.  相似文献   

3.
Benzimidazole 5-carboxamide derivatives from a combinatorial screening library were discovered as specific inhibitors of the NS5B polymerase of the hepatitis C virus (HCV). Initial hit-to-lead activities taking advantage of high-throughput parallel synthetic techniques, identified a 1,2-disubstituted benzimidazole 5-carboxylic acid scaffold as the minimum core for biological activity. Potent analogues in this series inhibit the polymerase at low micromolar concentrations and provide an attractive "drug-like" lead structure for further optimization and the development of potential HCV therapeutics.  相似文献   

4.
The RNA-dependent RNA polymerase (NS5B) from hepatitis C virus (HCV) is a key enzyme in HCV replication. NS5B is a major target for the development of antiviral compounds directed against HCV. Here we present the structures of three thiophene-based non-nucleoside inhibitors (NNIs) bound non-covalently to NS5B. Each of the inhibitors binds to NS5B non-competitively to a common binding site in the "thumb" domain that is approximately 35 Angstroms from the polymerase active site located in the "palm" domain. The three compounds exhibit IC(50) values in the range of 270 nM to 307 nM and have common binding features that result in relatively large conformational changes of residues that interact directly with the inhibitors as well as for other residues adjacent to the binding site. Detailed comparisons of the unbound NS5B structure with those having the bound inhibitors present show that residues Pro495 to Arg505 (the N terminus of the "T" helix) exhibit some of the largest changes. It has been reported that Pro495, Pro496, Val499 and Arg503 are part of the guanosine triphosphate (GTP) specific allosteric binding site located in close proximity to our binding site. It has also been reported that the introduction of mutations to key residues in this region (i.e. Val499Gly) ablate in vivo sub-genomic HCV RNA replication. The details of NS5B polymerase/inhibitor binding interactions coupled with the observed induced conformational changes provide new insights into the design of novel NNIs of HCV.  相似文献   

5.
A novel series of HCV NS5B polymerase inhibitors comprising 1,1-dioxoisothiazoles and benzo[b]thiophene-1,1-dioxides were designed, synthesized, and evaluated. SAR studies guided by structure-based design led to the identification of a number of potent NS5B inhibitors with nanomolar IC50 values. The most potent compound exhibited IC50 less than 10 nM against the genotype 1b HCV polymerase and EC50 of 70 nM against a genotype 1b replicon in cell culture. The DMPK properties of selected compounds were also evaluated.  相似文献   

6.
Herein, we describe the structure-activity relationship (SAR) of N,N-disubstituted phenylalanine series of NS5B polymerase inhibitors of hepatitis C. The NS5B polymerase inhibitory activity of the most active compound exhibited an IC(50) of 2.7 microM.  相似文献   

7.
Presented here are initial structure-activity relationship (SAR) studies on a series of novel heteroaryl fused tetracyclic indole-based inhibitors of the hepatitis C viral polymerase, NS5B. The introduction of alternative heterocyclic moieties into the indolo-fused inhibitor class significantly expands the reported SAR and resulted in the identification of pyridino analogs, typified by compounds 44 and 45 that displayed excellent potency against the NS5B polymerase of both HCV 1a and HCV 1b genotypes.  相似文献   

8.
From compound library screening using an HCV NS5B RNA-dependent RNA polymerase enzymatic assay, we identified a pteridine hit compound with an IC(50) of 15 microM. Our SAR studies were focused on the different groups at the 6- and 7-positions, substitutions at the 4-position, and replacement of N(1) or N(3) with carbon in the pteridine ring. We found that NH or OH at 4-position is critical for the inhibitory activity. Furthermore, a hydrophobic substituent at the 4-position may help compounds permeate through the cell membrane.  相似文献   

9.
Japanese encephalitis (JE) is a significant cause of human morbidity and mortality throughout Asia and Africa. Vaccines have reduced the incidence of JE in some countries, but no specific antiviral therapy is currently available. The NS3 protein of Japanese encephalitis virus (JEV) is a multifunctional protein combining protease, helicase and nucleoside 5'-triphosphatase (NTPase) activities. The crystal structure of the catalytic domain of this protein has recently been solved using a roentgenographic method. This enabled structure-based virtual screening for novel inhibitors of JEV NS3 helicase/NTPase. The aim of the present research was to identify novel potent medicinal substances for the treatment of JE. In the first step of studies, the natural ligand ATP and two known JEV NS3 helicase/NTPase inhibitors were docked to their molecular target. The refined structure of the enzyme was used to construct a pharmacophore model for JEV NS3 helicase/NTPase inhibitors. The freely available ZINC database of lead-like compounds was then screened for novel inhibitors. About 1 161 000 compounds have been screened and 15 derivatives of the highest scores have been selected. These compounds were docked to the JEV NS3 helicase/NTPase to examine their binding mode and verify screening results by consensus scoring procedure.  相似文献   

10.
A structure-based approach was performed to design a novel thiazolone scaffold as HCV NS5B inhibitors. A focused library was designed and docked by GOLD. One of the top-scored molecules was synthesized and shown to have similar potency to the initial hit. The X-ray complex structure was determined and validated our design rationale.  相似文献   

11.
Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with 1–10 mM binding affinity (KD) were iteratively optimized to give leads with 200 nM biochemical activity and low μM cellular activity in a Replicon assay.  相似文献   

12.
Hepatitis C virus (HCV) infection is highly persistent and presents an unmet medical need requiring more effective treatment options. This has spurred intensive efforts to discover novel anti-HCV agents. The RNA-dependent RNA polymerase (RdRp), NS5B of HCV, constitutes a selective target for drug discovery due to its absence in human cells; also, it is the centerpiece for viral replication. Here, we synthesized novel pyrrole, pyrrolo[2,3-d]pyrimidine and pyrrolo[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives. The non-toxic doses of these compounds on Huh 7.5 cell line were determined and their antiviral activity against HCVcc genotype 4a was examined. Compounds 7j, 7f, 5c, 12i and 12f showed significant anti HCV activity. The percent of reduction for the non-toxic doses of 7j, 7f, 5c, 12i and 12f were 90%, 76.7 ± 5.8%, 73.3 ± 5.8%, 70% and 63.3 ± 5.8%, respectively. The activity of these compounds was interpreted by molecular docking against HCV NS5B polymerase enzyme.  相似文献   

13.
We report a new series of inhibitors for hepatitis C virus NS5B RNA polymerase containing a constrained pentacyclic scaffold. Our SAR studies led to the identification of hexahydroindolo[2,1-a]pyrrolo[3,2-d][2]benzazepines exposing basic groups. The compounds displayed a high activity in the enzyme assay and displayed good activity in the cell-based (replicon) assay in the presence of serum proteins.  相似文献   

14.
Allosteric inhibition of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase enzyme has recently emerged as a viable strategy toward blocking replication of viral RNA in cell-based systems. We report here 2 series of indole-N-acetamides, bearing physicochemically diverse carboxylic acid replacements, which show potent affinity for the NS5B enzyme with reduced potential for formation of glucuronide conjugates. Preliminary optimization of these series furnished compounds that are potent in the blockade of subgenomic HCV RNA replication in HUH-7 cells.  相似文献   

15.
Here we examine the ability of seven, 3'-related, short synthetic RNAs to serve as templates for the hepatitis C virus (HCV) polymerase, non-structural protein 5B (NS5B). These RNAs, termed HL, range from 8 to 16 nucleotides in length, each with ACC at the 3' terminus. Interestingly HL12 and longer templates have a predicted secondary structure. Those with one or two unpaired adenylates at the 5'-end of a stem were increased in size by one or two nucleotides, respectively, following incubation with NS5B and UTP. Using labeled template RNA and cold UTP, extension in size could be inhibited by addition of non-labeled template of the same size. This template elongation was not inhibited by cold linear HL10 template unless pGpG was added. Fluorescence anisotropy demonstrated HL14, a template with secondary structure, bound with an apparent K(d) of 22 nm. A linear template, HL10, plus pGpG primer was bound by NS5B with a K(d) of 45 nm, whereas HL10 alone bound with an apparent K(d) of 182 nm. The amplitude of the template extension product was increased by a brief preincubation at 4 degrees C followed by incubation at 23 or 30 degrees C. The nucleotide-mediated increase in size occurred for both templates that required a mismatch or bulge at the 3'-end as well as for those without the mismatch. These results suggest an NS5B active site pocket can readily accommodate short templates with four or five base stems and initiate copy-back replication in the presence of a one nucleotide mismatch.  相似文献   

16.
The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity. We observe a wide range of efficiency for incorporation of various mismatched base pairs and have uncovered a mechanism in which the rate constant for pyrophosphate release is slowed for certain misincorporation events. This results in an increase in fidelity against these specific misincorporations. Furthermore, we discover that some mismatches are highly unfavorable and cannot be observed under the conditions used here. The calculated fidelity of NS5B ranges between 10−4–10−9 for different mismatches.  相似文献   

17.
Thieno[3,2-b]pyrroles are a novel class of allosteric inhibitors of HCV NS5B RNA-dependent RNA polymerase which show potent affinity for the NS5B enzyme. Introduction of a polar substituent in the position N1 led to a compound that efficiently blocks subgenomic HCV RNA replication in HUH-7 cells with an EC50 of 2.9 microM.  相似文献   

18.
N-terminal truncation of the hexapeptide ketoacid 1 gave rise to potent tripeptide inhibitors of the hepatitis C virus NS3 protease/NS4A cofactor complex. Optimization of these tripeptides led to ketoacid 30 with an IC50 of 0.38 microM. The SAR of these tripeptides is discussed in the light of the recently published crystal structures of a ternary tripetide/NS3/NS4A complexes.  相似文献   

19.
We report the evolutionary path from an open-chain series to conformationally constrained tetracyclic indole inhibitors of HCV NS5B-polymerase, where the C2 aromatic is tethered to the indole nitrogen. SAR studies led to the discovery of zwitterionic compounds endowed with good intrinsic enzyme affinity and cell-based potency, as well as superior DMPK profiles to their acyclic counterparts, and ultimately to the identification of a pre-clinical candidate with an excellent predicted human pharmacokinetic profile.  相似文献   

20.
The virally encoded NS5B RNA-dependent RNA polymerase has emerged as a prime target in the search for specific HCV antivirals. A series of benzimidazole 5-carboxamide compounds inhibit the cellular RNA replication of a HCV subgenomic replicon and we have advanced our understanding of this class of inhibitors through a combination of complementary approaches that include biochemical cross-linking experiments with a photoreactive analogue followed by mass spectrometry analysis of the enzyme. A novel binding site has been localized for these inhibitors at the junction of the thumb domain and the N-terminal finger loop. Furthermore, the isolation and characterization of resistant replicon mutants that co-localize to this region distinguished this class of compounds from other non-nucleoside NS5B inhibitors that bind to distinct allosteric sites. Resistant mutations that emerged with the benzimidazole 5-carboxamide and related compounds were found at three amino acid positions in the thumb domain: Pro(495) with substitutions to Ser, Leu, Ala, or Thr; Pro(496) substitutions to Ser or Ala; and a V499A substitution. Mutations at each of these positions conferred different levels of resistance to this drug class: the Pro(495) changes provided the greatest shifts in compound potency, followed by moderate changes in potency with the Pro(496) substitutions, and finally only minor shifts in potency with V499A. Combinations that include the benzimidazole 5-carboxamide polymerase inhibitors and compounds that bind other sites or other HCV targets, including HCV protease inhibitors, are complementary in cell culture models of HCV RNA replication at suppressing the emergence of resistant variants. This novel class of compounds and unique binding site expand the diversity of HCV antivirals currently under development and offer the potential to improve the treatment of chronic HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号