首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of HLA class I transcription in T cells   总被引:2,自引:0,他引:2  
  相似文献   

2.
Deletion of oligosaccharide side chains near the receptor binding site of influenza virus A/USSR/90/77 (H1N1) hemagglutinin (HA) enhanced the binding of HA to erythrocyte receptors, as was also observed with A/FPV/Rostock/34 (H7N1). Correlated with the enhancement of binding activity, the cell fusion activity of HA was reduced. A mutant HA in which three oligosaccharide side chains were deleted showed the highest level of binding and the lowest level of fusion among the HAs tested. The cell fusion activity of the oligosaccharide deletion mutant of HA, however, was drastically elevated when the binding activity was reduced by deletion of four amino acids adjacent to the receptor binding site. Thus, a reciprocal relationship was observed between the receptor binding and the cell fusion activities of H1/USSR HA. No difference was observed, however, in lipid mixing activity, so-called hemifusion, between wild-type (WT) and oligosaccharide deletion mutant HAs. Soluble dye transfer testing showed that even the HA with the lowest cell fusion activity was able to form fusion pores through which a small molecule such as calcein could pass. However, electron microscopic studies revealed that a large molecule such as hemoglobin hardly passed through the fusion pores formed by the mutant HA, whereas hemoglobin did efficiently pass through those formed by the WT HA. These results suggested that interference in the process of dilation of fusion pores occurs when the binding of HA to the receptor is too tight. Since the viral nucleocapsid is far larger than hemoglobin, appropriate receptor binding affinity is important for virus entry.  相似文献   

3.
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.  相似文献   

4.
Alveolar type II cells express a high affinity receptor for pulmonary surfactant protein A (SP-A), and the interaction of SP-A with these cells leads to inhibition of surfactant lipid secretion. We have investigated the binding of native and modified forms of SP-A to isolated rat alveolar type II cells. Native and deglycosylated forms of SP-A readily competed with 125I-SP-A for cell surface binding. Alkylation of SP-A with excess iodoacetamide yielded forms of SP-A that did not inhibit surfactant lipid secretion and did not compete with 125I-SP-A for cell surface binding. Reductive methylation of SP-A with H2CO and NaCNBH3 yielded forms of SP-A with markedly reduced receptor binding activity that also exhibited significantly reduced capacity to inhibit lipid secretion. Modification of SP-A with cyclohexanedione reversibly altered cell surface binding and the activity of SP-A as an inhibitor of lipid secretion. Two monoclonal antibodies that block the function of SP-A as an inhibitor of lipid secretion completely prevented the high affinity binding of SP-A to type II cells. A monoclonal antibody that recognizes epitopes on SP-A but failed to block the inhibition of secretion also failed to completely attenuate high affinity binding to the receptor. Concanavalin A inhibits phospholipid secretion of type II cells by a mechanism that is reversed in the presence of excess alpha-methylmannoside. Concanavalin A did not block the high affinity binding of 125I-SP-A to the receptor. Neither the high affinity binding nor the inhibitor activity of SP-A was prevented by the presence of mannose or alpha-methylmannoside. The SP-A derived from humans with alveolar proteinosis is a potent inhibitor of surfactant lipid secretion but failed to completely displace 125I-SP-A binding from type II cells. From these data we conclude that: 1) cell surface binding activity of rat SP-A is directly related to its capacity to inhibit surfactant lipid secretion; 2) monoclonal antibodies directed against SP-A can be used to map binding domains for the receptor; 3) the lectin activity of SP-A against mannose ligands does not appear to be essential for cell surface binding; 4) concanavalin A does not compete with SP-A for receptor binding; and 5) the human SP-A derived from individuals with alveolar proteinosis exhibits different binding characteristics from rat SP-A.  相似文献   

5.
Although the Ca(2+)-dependent proteinase (calpain) system has been found in every vertebrate cell that has been examined for its presence and has been detected in Drosophila and parasites, the physiological function(s) of this system remains unclear. Calpain activity has been associated with cleavages that alter regulation of various enzyme activities, with remodeling or disassembly of the cell cytoskeleton, and with cleavages of hormone receptors. The mechanism regulating activity of the calpain system in vivo also is unknown. It has been proposed that binding of the calpains to phospholipid in a cell membrane lowers the Ca2+ concentration, [Ca2+], required for the calpains to autolyze, and that autolysis converts an inactive proenzyme into an active protease. Recent studies, however, show that the calpains bind to specific proteins and not to phospholipids, and that binding to cell membranes does not affect the [Ca2+] required for autolysis. It seems likely that calpain activity is regulated by binding of Ca2+ to specific sites on the calpain molecule, with binding to each site eliciting a response (proteolytic activity, calpastatin binding, etc.) specific for that site. Regulation must also involve an, as yet, undiscovered mechanism that increases the affinity of the Ca(2+)-binding sites for Ca2+.  相似文献   

6.
The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.  相似文献   

7.
A potent inhibitor of mitogen-stimulated T cell proliferation exists in the saliva of several species of hard ticks, including the Lyme disease vector tick, Ixodes scapularis. Our characterization of this phenomenon has led to the identification of a possible mechanism for the T cell inhibitory activity of I. scapularis saliva. The T cell inhibitor can overcome stimulation of mouse spleen cells with anti-CD3 mAb; however, a direct and avid interaction with T cells does not appear to be necessary. Tick saliva inhibits a mouse IL-2 capture ELISA, suggesting that a soluble IL-2 binding factor is present in the saliva. This hypothesis was verified by using a direct binding assay in which plate-immobilized tick saliva was shown to bind both mouse and human IL-2. Elimination of the IL-2 binding capacity of saliva in the in vitro assays by trypsin digestion demonstrated that the IL-2 binding factor is a protein. These experiments comprise the first demonstration of the existence of such a secreted IL-2 binding protein from any parasite or pathogen. This arthropod salivary IL-2 binding capacity provides a simple mechanism for the suppression of T cell proliferation as well as for the activity of other immune effector cells that are responsive to IL-2 stimulation. Relevance of the tick T cell inhibitory activity to the human immune system is demonstrated by the ability of tick saliva to inhibit proliferation of human T cells and CTLL-2 cells grown in the presence of human IL-2.  相似文献   

8.
TNF alpha and TNF beta were compared regarding their binding to different types of target cells, cytotoxic/cytostatic activity against murine and human tumor cell lines as well as human capillary endothelial cells, their ability to induce differentiation in myeloid leukemia cell lines, and induction of hemorrhagic tumor necrosis and tumor regression as well as lethal toxicity in tumor-bearing mice. The results show considerable quantitative differences in the biological activity between TNF alpha and TNF beta depending on the type of target cell which has been used. TNF beta was 3 fold more cytotoxic than TNF alpha against murine L929 fibroblasts and 3-5 times more active concerning the induction of hemorrhagic tumor necrosis, complete tumor regression and more toxic in tumor-bearing mice. In contrast to this, TNF beta was markedly less cytotoxic against human capillary endothelial cells and the human mammary carcinoma cell line MCF7 and much less cytostatic against the human myeloid leukemia cell lines HL60 and U937. The lesser antiproliferative effect of TNF beta correlated with a lower ability for induction of differentiation in these cell lines. Competitive radioligand binding assays showed that TNF beta was about 4 fold more effective than TNF alpha in competing with 125I-labeled TNF alpha for the binding to murine L929 fibroblasts. But it was 15-20 times less effective in binding to the human MCF7 cells and the human myeloid leukemia cell lines HL60 and U937. This revealed that, at least for these targets, the differences in the biological activity between TNF alpha and TNF beta are due to different abilities for binding to the target cells. Possible mechanisms for these different binding abilities are discussed.  相似文献   

9.
Interleukin-18 (IL-18) binding protein is a soluble decoy receptor for IL-18 which efficiently antagonizes biological functions of IL-18 in vitro and in vivo. Since regulation of IL-18 activity likely contributes to the pathogenesis of inflammatory diseases as well as malignancies, we investigated gene expression of IL-18 binding protein (IL-18BP) in different human cell systems, namely in the keratinocyte cell line HaCaT, in the colon carcinoma cell line DLD-1, and in primary renal mesangial cells. In unstimulated cells only minute amounts of mRNA coding for IL-18 binding protein were detectable. However, in all three cell types gene expression was markedly upregulated by interferon-gamma (IFN-gamma). IL-18 is recognized as a pivotal mediator of IFN-gamma production. Therefore, the present data imply that activity of IL-18 is modulated by a negative feedback mechanism which is mediated by IFN-gamma-induced IL-18 binding protein.  相似文献   

10.
Thrombospondin-1 (TSP-1) is a matrix protein that has been implicated in mechanisms of tumor progression. Our laboratory previously showed that the CSVTCG (cys-ser-val-thr-cys-gly) sequence of TSP-1 functioned as a tumor cell adhesion domain and CSVTCG peptides as well as an anti-peptide antibody possessed anti-metastatic activity in a murine model of lung metastasis. In a subsequent study, a putative TSP-1 binding protein from lung carcinoma was isolated by CSVTCG-peptide affinity chromatography. In this study, we present the full-length cDNA of this binding protein isolated from a prostate cancer cell (PC3-NI) cDNA library. The purified recombinant protein, termed angiocidin, is a potent inhibitor of tumor growth of Lewis Lung carcinoma in vivo and tumor invasion and angiogenesis in vitro. In addition, the recombinant protein inhibits tumor and endothelial cell proliferation and induces apoptosis. The activity of angiocidin both in vivo and in vitro is partially dependent on its TSP-1 binding activity, since an angiocidin deletion mutant missing a high affinity-binding site for TSP-1 failed to inhibit tumor growth in vivo and was less active in its anti-tumor and anti-angiogenic activities in vitro. These results suggest that the anti-tumor activity of TSP-1 reported in many studies may be mediated in part by binding proteins such as angiocidin. Such proteins may function as tumor-suppressor proteins, which limit the growth of tumors by inhibiting angiogenesis and cell matrix interaction.  相似文献   

11.
12.
Heparin is required for the binding of basic fibroblast growth factor (bFGF) to high-affinity receptors on cells deficient in cell surface heparan sulfate proteoglycan. So that this heparin requirement could be evaluated in the absence of other cell surface molecules, we designed a simple assay based on a genetically engineered soluble form of murine FGF receptor 1 (mFR1) tagged with placental alkaline phosphatase. Using this assay, we showed that FGF-receptor binding has an absolute requirement for heparin. By using a cytokine-dependent lymphoid cell line engineered to express mFR1, we also showed that FGF-induced mitogenic activity is heparin dependent. Furthermore, we tested a series of small heparin oligosaccharides of defined lengths for their abilities to support bFGF-receptor binding and biologic activity. We found that a heparin oligosaccharide with as few as eight sugar residues is sufficient to support these activities. We also demonstrated that heparin facilitates FGF dimerization, a property that may be important for receptor activation.  相似文献   

13.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

14.
Purified fractions of glycosylated (pGPrl) and unglycosylated (pUGPrl) porcine prolactin were prepared by affinity chromatography on Concanavalin A-Sepharose. The relative binding activities of these two forms of prolactin for receptors from porcine mammary, adrenal cortex and rabbit mammary, as well as their Nb2 cell mitogenic activity were determined. In both the porcine mammary and adrenal cortex receptor binding assays pGPrl had a 2-3 fold lower activity than pUGPrl. In the rabbit mammary binding assay pGPrl had a about a 5 fold lower activity than pUGPrl. Similarly, pGPrl had only about 20% of the activity of pUGPrl in the Nb2 cell proliferation assay.  相似文献   

15.
16.
In membrane preparations from D. discoideum cells GTP-binding activity is observed. The lack of GTP binding to intact cells suggests that the binding sites are localized inside the cell. The GTP-binding activity also remains in the particulate fraction in the presence of 1 mM Ca++. This excludes membrane-associated microtubuli to be responsible for the observed GTP binding. Scatchard analysis suggests the existence of one type of binding site (Kd = 2.6 microM and 3.6 X 10(5) sites per cell). The kinetics of association as well as dissociation, however, suggest that GTP binding is more complex than binding to a single type of site. GDP and guanylyl imidodiphosphate are potent competitors of GTP binding (respectively 5- and 10-fold worse than GTP) while GMP, cGMP and several adenine nucleotides are ineffective up to 1 mM. The chemoattractants cAMP and folic acid both increase the equilibrium binding level of GTP, while dissociation of GTP is accelerated. These data indicate the functional coupling between cell surface receptors and G-proteins.  相似文献   

17.
18.
A specific DIF binding protein in Dictyostelium   总被引:6,自引:4,他引:2  
R Insall  R R Kay 《The EMBO journal》1990,9(10):3323-3328
Differentiation Inducing Factor (DIF-1), a small chlorinated organic molecule which is produced during Dictyostelium development, is believed to be the morphogen that controls the stalk-specific pathway of differentiation. We describe the identification and characterization of a protease-sensitive activity from cell lysates which binds tritiated DIF-1 with the properties expected of a DIF receptor. Scatchard and linear subtraction plots show a single class of binding sites, of high affinity (Kd = 1.8 nM) and low abundance (1100 sites/cell). The activity elutes from heparin-agarose as a single peak. Various DIF-1 analogues compete for binding in proportion to their activities in a stalk cell differentiation bioassay. The amount of binding activity is developmentally regulated, peaking shortly before the appearance of the prestalk-prespore pattern and before the developmental rise in DIF concentration; the rise occurs at the same time that prestalk-specific genes become DIF inducible. Addition of cyclic AMP to aggregated cells, which induces post-aggregative gene expression in general, also induces the binding activity.  相似文献   

19.
Inhibition of the binding of [3H]ponasterone A ([3H]PoA) by ecdysone agonists including diacylhydrazines such as RH-5849, tebufenozide (RH-5992) and methoxyfenozide (RH-2485) was examined in intact Drosophila Kc cells. The reciprocal logarithm of the concentration at which there is 50% inhibition of [3H]PoA binding, pIC(50) (M), was determined as the binding activity for all compounds from each concentration-response curve. The order of the activity was PoA>20-hydroxyecdysone>cyasterone>inokosterone>or=makisterone A>methoxyfenozide>or=tebufenozide>ecdysone>RH-5849. The ranking of steroidal ecdysone analogs is consistent with that obtained against Spodoptera Sf-9 cells. Furthermore, in terms of pIC(50), all binding activity for ecdysone analogs, except ecdysone, estimated in the Kc cell line system was significantly higher than that for the Sf-9 cell line system. However, the activity of ecdysone was comparable between Kc and Sf-9 cells. The activity of diacylhydrazine analogs against Kc cells was significantly low compared with that against Sf-9 cells. The potency of methoxyfenozide was 1/200 that of PoA, which showed the highest activity in the Kc cell line system among all compounds tested. The activity of tebufenozide analogs having an n-pentyl or n-hexyl group instead of a 4-ethylphenyl group was similar to that of RH-5849.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号