首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and structure–activity relationship studies of imidazoles are described. The target compounds 620 represent a novel chemotype of potent and CB2/CB1 selective cannabinoid CB2 receptor antagonists/inverse agonists with very high binding efficiencies in combination with favourable log P and calculated polar surface area values. Compound 12 exhibited the highest CB2 receptor affinity (Ki = 1.03 nM) in this series, as well as the highest CB2/CB1 subtype selectivity (>9708-fold).  相似文献   

2.
A series of sulfenamide and sulfonamide derivatives was synthesized and evaluated for the affinity at CB1 and CB2 receptors. The N-bornyl-S-(5,6-di-p-tolylpyridazin-3-yl)-sulfenamide, compound 11, displayed good affinity and high selectivity for CB1 receptors (Ki values of 44.6?nM for CB1 receptors and >40?μM for CB2 receptors, respectively). The N-isopinocampheyl-sulfenamide 12 and its sulfonamide analogue 22 showed similar selectivity for CB1 receptors with Ki values of 75.5 and 73.2?nM, respectively. These novel compounds behave as antagonists/inverse agonists at CB1 receptor in the [35S]-GTPγS binding assays, and none showed adequate predictive blood–brain barrier permeation, exhibiting low estimated LD50. However, testing compound 12 in a supraspinal analgesic test (hot-plate) revealed that it was as effective as the classic CB1 receptor antagonist rimonabant, in reversing the analgesic effect of a cannabinoid agonist.  相似文献   

3.
New substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized by replacing the 2,4-dichlorobenzyl and cyclohexyl moieties at the 3-carboxamide nitrogen of the previously reported CB1 receptor antagonists/inverse agonists 4 and 5. Several ligands showed potent affinity for the hCB1 receptor, with Ki concentrations comparable to the reference compounds 1, 4 and 5, and exhibited CB1 selectivity comparable to 1 and 2. Docking experiments and molecular dynamics (MD) simulations explained the potent hCB1 binding affinity of compounds 31 and 37. According to our previous studies, 31 and 37 formed a H-bond with K3.28(192), which accounted for the high affinity for the receptor inactive state and the inverse agonist activity. The finding of inhibition of food intake following their acute administration to rats, supported the concept that the CB1 selective compounds 4 and 52 act as antagonists/inverse agonists.  相似文献   

4.
The pharmacokinetic based optimisation of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB1 receptor is disclosed. Compound 24 was found to be a highly potent and selective cannabinoid CB1 antagonist with high predicted human oral bioavailability.  相似文献   

5.
The synthesis and structure–activity relationship studies of 1,4,5,6-tetrahydropyridazines are described. The target compounds 35 represent a novel class of potent and selective CB1 receptor antagonists.  相似文献   

6.
The synthesis and SAR of 3-alkyl-4-aryl-4,5-dihydropyrazole-1-carboxamides 123 and 1-alkyl-5-aryl-4,5-dihydropyrazole-3-carboxamides 2427 as two novel cannabinoid CB1 receptor agonist classes were described. The target compounds elicited high affinities to the CB1 as well as the CB2 receptor and were found to act as CB1 receptor agonists. The key compound 19 elicited potent CB1 agonistic and CB2 inverse agonistic properties in vitro and showed in vivo activity in a rodent model for multiple sclerosis after oral administration.  相似文献   

7.
CRA13; a peripheral dual CB1R/CB2R agonist with clinically proven analgesic properties, infiltrates into CNS producing adverse effects due to central CB1R agonism. Such adverse effects might be circumvented by less lipophilic compounds with attenuated CB1R affinity. Metabolism produces less lipophilic metabolites that might be active metabolites. Some CRA13 oxidative metabolites and their analogues were synthesized as less lipophilic CRA13 analogues. Probing their CB1R and CB2R activity revealed the alcohol metabolite 8c as a more potent and more effective CB2R ligand with attenuated CB1R affinity relative to CRA13. Also, the alcohol analogue 8b and methyl ester 12a possessed enhanced CB2R affinity and reduced CB1R affinity. The CB2R binding affinity of alcohol analogue 8b was similar to CRA13 while that of methyl ester 12a was more potent. In silico study provided insights into the possible molecular interactions that might explain the difference in the elicited biological activity of these compounds.  相似文献   

8.
The cannabinoid CB1/CB2 receptor subtype selectivity in the 1,2-diarylimidazole-4-carboxamide series was boosted by fine-tuning its 5-substitution pattern. The presence of the 5-methylsulfonyl group in 11 led to a greater than ~840-fold CB1/CB2 subtype selectivity. The compounds 10, 18 and 19 were found more active than rimonabant (1) in a CB1-mediated rodent hypotension model after oral administration. Our findings suggest a limited brain exposure of the P-glycoprotein substrates 11, 12 and 21.  相似文献   

9.
Cannabinoid CB1 receptor antagonists reduce body weight in rodents and humans, but their clinical utility as anti-obesity agents is limited by centrally mediated side effects. Here, we describe the first mixed CB1 antagonist/CB2 agonist, URB447 ([4-amino-1-(4-chlorobenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl](phenyl)methanone), which lowers food intake and body-weight gain in mice without entering the brain or antagonizing central CB1-dependent responses. URB447 may provide a useful pharmacological tool for investigating the cannabinoid system, and might serve as a starting point for developing clinically viable CB1 antagonists devoid of central side effects.  相似文献   

10.
A new series of CB1 receptor antagonists incorporating an imidazole-based isosteric replacement for the hydrazide moiety of rimonabant (SR141716) is disclosed. Members of this imidazole series possess potent/selective binding to the rCB1 receptor and exhibit potent hCB1 functional activity. Isopropyl analog 9a demonstrated activity in the tetrad assay and was orally-active in a food intake model.  相似文献   

11.
The synthesis, structure–activity relationship (SAR) studies and intramolecular hydrogen bonding pattern of 1,3,5-trisubstituted 4,5-dihydropyrazoles are described. The target compounds 618 represent a novel class of potent and selective CB1 receptor antagonists. Based on X-ray diffraction data, the orally active 17 is shown to elicit a different intramolecular H-bonding mode as compared to ibipinabant (3) and SLV330 (4).  相似文献   

12.
Three 1-methoxy analogs of CP-47,497 (7, 8, and 19) have been synthesized and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. Although these compounds exhibit selectivity for the CB2 receptor none have significant affinity for either receptor. Modeling and receptor docking studies were carried out, which provide a rationalization for the weak affinities of these compounds for either receptor.  相似文献   

13.
In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH.Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.  相似文献   

14.
Recently, A-836339 [2,2,3,3-tetramethylcyclopropanecarboxylic acid [3-(2-methoxyethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]amide] (1) was reported to be a selective CB2 agonist with high binding affinity. Here we describe the radiosynthesis of [11C]A-836339 ([11C]1) via its desmethyl precursor as a candidate radioligand for imaging CB2 receptors with positron-emission tomography (PET). Whole body and the regional brain distribution of [11C]1 in control CD1 mice demonstrated that this radioligand exhibits specific uptake in the CB2-rich spleen and little specific in vivo binding in the control mouse brain. However, [11C]1 shows specific cerebral uptake in the lipopolysaccharide (LPS)-induced mouse model of neuroinflammation and in the brain areas with Aβ amyloid plaque deposition in a mouse model of Alzheimer’s disease (APPswe/PS1dE9 mice). These data establish a proof of principle that CB2 receptors binding in the neuroinflammation and related disorders can be measured in vivo.  相似文献   

15.
A series of benzimidazole CB2 receptor agonists were prepared and their properties investigated. Optimisation of the three benzimidazole substituents led to the identification of compound 23, a potent CB2 full agonist (EC50 2.7 nM) with excellent selectivity over the CB1 receptor (>3000-fold). Compound 23 demonstrated good CNS penetration in rat. Further optimisation led to the identification of compound 34 with improved selectivity over hERG and excellent CNS penetration in rat.  相似文献   

16.
We report further expansion of the structure activity relationship (SAR) on the triaryl bis sulfone class of compounds (I), which are potent CB2 receptor ligands with excellent selectivity over the CB1 receptor. This study was extended to B ring changes, followed by simultaneous optimization of the A-, B-, and C-rings. Compound 42 has excellent CB2 potency, selectivity and rat exposure.  相似文献   

17.
There is strong interest to study the involvement of brain cannabinoid subtype-1 (CB1) receptors in neuropsychiatric disorders with single photon emission computed tomography (SPECT) and a suitable radioligand. Here we report the synthesis of a novel high-affinity radioiodinated CB1 receptor ligand ([125I]8, [125I]1-(2-iodophenyl)-4-cyano-5-(4-methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxylate, [125I]SD7015). By autoradiography in vitro, [125I]8 showed selective binding to CB1 receptors on human brain postmortem cryosections and now merits labeling with iodine-123 for further evaluation as a SPECT radioligand in non-human primate.  相似文献   

18.
The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing. Increased afferent vagal activation may predispose to OSA by reducing upper airway muscle activation/patency and disrupting respiratory rhythmogenesis. Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors in animal models of vagally-mediated behaviors. Injections of dronabinol, a non-selective CB1/CB2 receptor agonist, into the nodose ganglia reduced serotonin (5-HT)-induced reflex apneas. It is unknown what role CB1 and/or CB2 receptors play in reflex apnea. Here, to determine the independent and combined effects of activating CB1 and/or CB2 receptors on dronabinol’s attenuating effect, rats were pre-treated with CB1 (AM251) and/or CB2 (AM630) receptor antagonists. Adult male Sprague-Dawley rats were anesthetized, instrumented with bilateral electrodes to monitor genioglossus electromyogram (EMGgg) and a piezoelectric strain gauge to monitor respiratory pattern. Following intraperitoneal treatment with AM251 and/or AM630, or with vehicle, serotonin was intravenously infused into a femoral vein to induce reflex apnea. After baseline recordings, the nodose ganglia were exposed and 5-HT-induced reflex apneas were again recorded to confirm that the nerves remained functionally intact. Dronabinol was injected into each nodose ganglion and 5-HT infusion was repeated. Prior to dronabinol injection, there were no significant differences in 5-HT-induced reflex apneas or phasic and tonic EMGgg before or after surgery in the CB1, CB2, combined CB1/CB2 antagonist, and vehicle groups. In the vehicle group, dronabinol injections reduced 5-HT-induced reflex apnea duration. In contrast, dronabinol injections into nodose ganglia of the CB1, CB2, and combined CB1/CB2 groups did not attenuate 5-HT-induced reflex apnea duration. However, the CB1 and CB2 antagonists had no effect on dronabinol’s ability to increase phasic EMGgg. These findings underscore the therapeutic potential of dronabinol in the treatment of OSA and implicate participation of both cannabinoid receptors in dronabinol’s apnea suppression effect.  相似文献   

19.
A convergent strategy was followed to modify systematically carbazole based CB2 receptor ligands. The length of the N-(fluoroalkyl) group (n in 7), the length of the alkanamide (m in 7) and the substitution pattern of the phenyl moiety (X and Y in 7) were varied systematically. The highest CB2 affinity was found for the 2-fluoroethyl substituted carbazole derivative 20a (Ki = 5.8 nM) containing the propionamide and the 2-bromo-4-fluorophenyl moiety. According to docking studies 20a fits nicely into the binding pocket of the CB2 receptor, but elongation of the fluoroethyl side chain leads to a different binding mode of the ligands. The high CB2 affinity together with the high selectivity over the CB2 subtype qualifies the fluoroethyl derivative 20a to be developed as a PET tracer.  相似文献   

20.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号