首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Trehalose is a non-reducing disaccharide with a wide range of applications in food, cosmetic, and pharmaceutical industries. Cyanobacteria are promising cell factories to produce biochemicals by using solar energy and CO2. Trehalose is biosynthesized at low intracellular concentrations as a salt-inducible compatible solute in some cyanobacteria. In the current study, we demonstrated the efficient trehalose production without salt induction in cyanobacteria by metabolic engineering. The trehalose transporter 1 (TRET1) from an anhydrobiotic insect (Polypedilum vanderplanki) was successfully expressed in the engineered strains and the intracellular trehalose was efficiently secreted to the medium. As the results, the engineered strain co-expressing maltooligosyl trehalose synthase (MTS), maltooligosyl trehalose trehalohydrolase (MTH) and TRET1 secreted 97% of trehalose to the medium, and the titer was up to 2.7 g/L in 15 days. In addition, 5.7 g/L trehalose was produced by semi-continuous cultivation in 34 days. Taken together, this work demonstrates cyanobacteria can be applied as cell factories for direct sunlight-driven conversion of CO2 into excreted trehalose.  相似文献   

2.
3.
Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (Me2SO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250–500 mM being optimal, and a cooling rate below 30 K/min, with 5–20 K/min being optimal.  相似文献   

4.
《Insect Biochemistry》1981,11(1):43-47
A temperature-dependent interconversion between fat body glycogen and haemolymph trehalose was demonstrated in diapausing pupae of the silkworm, Philosamia cynthia pryeri. When pupae at early-diapause stage were placed at 2°C for several weeks, the haemolymph trehalose content increased to about 35–50 mg/ml haemolymph, whereas the trehalose content of insects maintained at 20°C remained at 5–10 mg/ml. Concomitant with this change in haemolymph trehalose level, the glycogen content of the fat body dropped from 29–41 mg to 6.6–8.6 mg/g wet weight. This interconversion could be demonstrated repeatedly if the diapausing pupae were successively exposed to high and low temperatures, although the total amount of carbohydrates decreased slightly during repeated interconversions.Non-diapausing pupae of the silkworm, Philosamia cynthia ricini, did not accumulate trehalose appreciably even when exposed to 2°C for a long period.  相似文献   

5.
6.
In the cockroaches Periplaneta americana, Periplaneta australasiae, Leucophaea maderae, and Nauphoeta cinerea, undiluted haemolymph, undiluted haemolymph to which 10% solid trehalose was added, and haemolymph diluted 100 or more times with 1% trehalose solution showed approximately equal trehalase activities (3 to 8 mg/ml per hr). No evidence for the presence of a trehalase inhibitor was found.Freshly drawn haemolymph of Periplaneta americana contained 14 to 16 mg trehalose/ml, which on standing was hydrolyzed to glucose at a rate of 4 to 8 mg/ml per hr. In this cockroach, the rate of haemolymph trehalose turnover was only 1.3 mg/ml per hr. This means that in vitro trehalose is hydrolyzed by undiluted haemolymph at several times the rate at which it is replaced in the haemolymph of the intact insect. The mechanism through which trehalose and trehalase can coexist in the haemolymph of the intact cockroach remains therefore unexplained.  相似文献   

7.
α-Glucosidase activity of whole haemolymph has been investigated in adult males of the American cockroach, Periplaneta americana. Two electrophoretically distinguishable enzymes capable of hydrolysing α-glucosidic linkages are present in the serum component of the haemolymph, and one of these hydrolyses trehalose. Trehalase activity is also present in haemocytes, and the haemocyte enzyme shares an identical electrophoretic mobility and similar pH sensitivity with the serum trehalase. Furthermore, both enzymes are inhibited to the same extent by sodium ethylene diamine tetracetate (EDTA); thus it is suggested that the same enzyme may be responsible for trehalase activity in the two components. The Km of EDTA-inhibited trehalase is 3·3 mM and this value is reduced to 1·8 mM upon activation of the enzyme by calcium ions. The properties of the trehalase are discussed in light of the possible rôle of the enzyme in regulating haemolymph trehalose and glucose concentrations.  相似文献   

8.
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose.  相似文献   

9.
Preface     
The vector of Chagas' disease, Rhodnius prolixus, feeds exclusively on blood. The blood meals are slowly digested, and these insects wait some weeks before the next meal. During the life of an insect, energy‐requiring processes such as moulting, adult gonadal and reproductive growth, vitellogenesis, muscular activity, and fasting, lead to increased metabolism. Carbohydrates are a major source of energy and their mobilization is important. We determined the amounts of glycogen, trehalose, and glucose present in the fat body and/or hemolymph of adult males of R. prolixus and recorded the processes of accumulation and mobilization of these carbohydrates. We also tested our hypothesis that these processes are under endocrine control. The amount of glycogen in the fat body progressively increased until the fourth day after feeding (from 9.3±2.2 to 77. 3±7.5 µg/fat body), then declined to values around 36.3±4.9 µg/fat body on the fifteenth day after the blood meal. Glycogen synthesis was eliminated in decapitated insects and head‐transplanted insects synthesized glycogen. The amount of trehalose in the fat body increased until the sixth day after feeding (from 16. 6±1.7 to 40. 6±5.3 nmol/fat body), decreased abruptly, and stabilized between days 7 and 15 at values ranging around 15–19 nmol/fat body. Decapitated insects did not synthesize trehalose after feeding, and this effect was reversed in head‐transplanted insects. The concentration of trehalose in the hemolymph increased after the blood meal until the third day (from 0.07±0.01 to 0.75±0.05 mM) and at the fourth day it decreased until the ninth day (0.21±0.01 mM), when it increased again until the fourteenth day (0.79±0.06 mM) after the blood meal, and then declined again. In decapitated insects, trehalose concentrations did not increase soon after the blood meal and at the third day it was very low, but on the fourteenth day it was close to the control values. The concentration of glucose in the hemolymph of untreated insects remained low and constant (0.18±0.01 mM) during the 15 days after feeding, but in decapitated insects it progressively increased until the fifteenth day (2.00±0.10 mM). We recorded the highest trehalase activity in midgut, which was maximal at the eighth day after feeding (2,830±320 nmol of glucose/organ/h). We infer that in Rhodnius prolixus, the metabolism of glycogen, glucose, and trehalose are controlled by factors from the brain, according to physiological demands at different days after the blood meal. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
A thermostable trehalose synthase (TreS) gene from Meiothermus ruber CBS-01 was cloned and overexpressed in Escherichia coli. The purified recombinant TreS could utilize maltose to produce trehalose, and showed an optimum pH and temperature of 6.5 and 50°C, respectively. Kinetic analysis showed that the enzyme had a twofold higher catalytic efficiency (k cat/K m) for maltose than for trehalose, indicating maltose as the preferred substrate. The TreS also had a weak hydrolytic property with glucose as the byproduct, and glucose was a strong competitive inhibitor of the enzyme. The maximum production of trehalose by the enzyme reached 65% at 20°C. The most importantly the enzyme could maintain very high activity (above 90%) at pH 4.0–8.0 and 60°C 5 h. These results provided that the stable TreS was suitable for the industrial production of trehalose from maltose in a one-step reaction.  相似文献   

11.
Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is an important non-reducing disaccharide used in the food industry due to its mild sweetness (45% that of sucrose), low cariogenicity, high glass transition temperature, low hygroscopicity, and protein protection properties. In this study, we accomplished the production of trehalose from sucrose as a sole substrate using a novel dual-enzyme system, in which amylosucrase (ASase) and maltooligosyltrehalose synthase-trehalohydrolase (MTSH) fusion enzyme were employed. The biotransformation of sucrose to trehalose was confirmed by high-performance anion-exchange chromatography (HPAEC) analysis. Trehalose was successfully produced by both simultaneous and sequential methods by using ASase and MTSH. A higher trehalose production yield (3.15 ± 0.83 mM trehalose/20 mM sucrose) was observed in the sequential method than the simultaneous method (1.43 ± 0.14 mM trehalose/20 mM sucrose), indicating that the production of maltooligosaccharides from sucrose by ASase was an important step in the biosynthesis of trehalose.  相似文献   

12.
《Small Ruminant Research》2010,94(2-3):206-209
This study tested trehalose and low-density lipoprotein (LDL) as cryoprotectants in extenders for frozen ram semen. In the first experiment, the extenders were Tris, with 20% egg yolk (E1-1); E1-1 with 5% glycerol (E1-2); E1-1 with 100 mM trehalose (E1-3); and E1-1 with 100 mM trehalose and 5% glycerol (E1-4). Sperm motility and membrane integrity of the E1-2, E1-3 and E1-4 extenders were greater than for E1-1 (P < 0.05), but acrosome integrity following cryopreservation did not differ. In the second experiment, the extenders were Tris, with 20% egg yolk and 100 mM trehalose (E2-1); Tris with 8% LDL and 5% glycerol (E2-2); Tris with 8% LDL and 100 mM trehalose (E2-3); and Tris with 8% LDL, 100 mM trehalose and 5% glycerol (E2-4). Sperm membrane integrity was lowest for the E2-1 extender (P < 0.05), but similar for extenders including LDL. Sperm motility post-thawing was highest for E2-2 and E2-3 extenders (P < 0.05), but acrosome integrity did not differ. Thus, extenders including trehalose and LDL as cryoprotectants recorded a post-thawing ram sperm quality similar to that achieved when using conventional cryoprotectants.  相似文献   

13.
《Cryobiology》2014,68(3):305-311
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications.  相似文献   

14.
Surface areas and fluctuations evaluated from 50 ns molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers in a 1:2 trehalose:lipid ratio carried out at surface tensions 10, 17 and 25 dyn/cm/leaflet are compared with those of pure bilayers under the same conditions. Trehalose increases the surface area, as consistent with the surface tension lowering observed in simulations at constant area. The system bulk elastic modulus K b  = 1.5 ± 0.3 × 1010 dyn/cm2. It is independent of bilayer surface area and trehalose content within statistical error. In contrast, the area elastic modulus K a shows a strong area dependence. At 64 Å2/lipid (the experimental surface area), K a  = 138 ± 26 dyn/cm for a pure DPPC bilayer and 82 ± 10 dyn/cm for one with trehalose; i.e. trehalose increases fluidity of the bilayer surface at this area per lipid.  相似文献   

15.
Trehalose uptake at 65°C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 ± 11 μM and Vmax = 21.2 ± 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 ± 0.03 μM and Vmax = 0.39 ± 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 ± 3 μM and Vmax = 48 ± 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 μM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.  相似文献   

16.
17.
Low temperature causes loss of neuromuscular function in a wide range of insects, such that the animals enter a state known as chill coma. The ability to recover from chill coma (chill coma recovery time) is often a popular phenotype to characterise chill tolerance in insects. Chill coma in insects has been shown to be associated with a decrease in haemolymph volume and a marked increase in [K+], causing dissipation of K+ equilibrium potential and resting membrane potential. High potassium diet (wheat) has also previously been shown to increase haemolymph [K+] in Locusta migratoria leading to sluggish behaviour. The present study combined these two independent stressors of ion and water homeostasis, in order to investigate the role of K+- and water-balance during recovery from chill coma, in the chill sensitive insect L. migratoria. We confirmed that cold shock elicits a fast increase in haemolymph [K+] which is likely caused by a water shift from the haemolymph to the muscles and other tissues. Recovery of haemolymph [K+] is however not only reliant on recovery of haemolymph volume, as the recovery of water and K+ is decoupled. Chill coma recovery time, after 2 h at −4 °C, differed significantly between fasted animals and those fed on high K+ diet. This difference was not associated with an increased disturbance of haemolymph [K+] in the fed animals, instead it was associated with a slowed recovery of muscle [K+], muslce water, haemolymph [Na+] and K+equilibrium potential in the fed animals.  相似文献   

18.
Hypertrehalosemia occurs two days after cardiacectomy of adult male Phormia regina with no attendant change in fat body glycogen. In spite of this, cardiacectomized flies caused to fly for 10 min show a lower rate of haemolymph trehalose turnover, and seem to have a decreased capability for synthesizing trehalose from haemolymph glucose. Phormia brain is shown to contain a hypotrehalosemic hormone whose release depends on the integrity of the stomatogastric nervous system. It is possible that the hypertrehalosemic condition in cardiacectomized flies is a result of the absence of this hormone from the blood.  相似文献   

19.
d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki = 167 ± 21 mM, Ki = 661 ± 81 mM, cf. Km = 19 ± 2 mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5 mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki = 111 ± 15 mM, cf. Km = 5.7 ± 0.5 mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.  相似文献   

20.
Sperm vitrification is a low cost and simple technique that does not require special equipment and may represent an attractive alternative to the costly and time consuming conventional dog spermatozoa cryopreservation techniques. The objective of this study was to evaluate different cryoprotectants and warming temperatures on the vitrification of dog spermatozoa. Pooled semen samples from 10 beagle dogs were vitrified with four extenders, based on Tris, citric acid and glucose, 20% egg yolk (TCG-20% EY) and different combinations of sucrose and/or trehalose: 250 mM sucrose; 250 mM trehalose; 125 mM sucrose + 125 mM trehalose; 250 mM sucrose + 250 mM trehalose. Samples were vitrified by dropping 50 μL of sperm suspension directly into liquid nitrogen. After vitrification, warming was done either fast (at 65 °C for 2–5 s) or slow (at 37 °C for one minute). Motility was assayed using a computer-aided sperm analysis (CASA) system; membrane integrity and acrosomal status were analyzed by fluorescence microscopy. For comparison, samples were also conventionally frozen in liquid nitrogen vapor using a TCG-20% egg yolk extender plus 5% glycerol. Frozen straws were thawed in a water bath at 37 °C for 30 s. Poorer motility results (P < 0.05) but similar viability were obtained when vitrification was performed, compared to conventional freezing (P > 0.05). When vitrification was used, cryoprotectants containing either 250 mM sucrose or 250 mM trehalose and warmed at 37 °C returned the best sperm quality variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号