首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Two series (4 and 5) of diarylpyridine derivatives were designed, synthesized, and evaluated for anti-HIV-1 activity. The most promising compound, 5e, inhibited HIV-1 IIIB, NL4-3, and RTMDR1 with low nanomolar EC50 values and selectivity indexes of >10,000. The results of this study indicate that diarylpyridine can be used as a novel scaffold to derive a new class of potent NNRTIs, active against both wild-type and drug-resistant HIV-1 strains.  相似文献   

4.
5.
On the basis of our prior structure-activity relationship (SAR) results, our current lead optimization of 1,5-diarylanilines (DAANs) focused on the 4-substituent (R1) on the central phenyl ring as a modifiable position related simultaneously to improved drug resistance profiles and drug-like properties. Newly synthesized p-cyanovinyl-DAANs (8a8g) with different R1 side chains plus prior active p-cyanoethyl-DAANs (4a4c) were evaluated not only for anti-HIV potency against both wild-type HIV virus and rilpivirine-resistant (E138K, E138K+M184I) viral replication, but also for multiple drug-like properties, including aqueous solubility, lipophilicity, and metabolic stability in human liver microsomes and human plasma. This study revealed that both ester and amide R1 substituents led to low nanomolar anti-HIV potency against wild-type and rilpivirine-resistant viral strains (E138K-resistance fold changes < 3). The N-substituted amide-R1 side chains were superior to ester-R1 likely due to improved aqueous solubility, lipophilicity, and higher metabolic stability in vitro. Thus, three amide-DAANs 8e, 4a, and 4b were identified with high potency against wild-type and rilpivirine-resistant viral strains and multiple desirable drug-like properties.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The current optimization of 2,4-diarylaniline analogs (DAANs) on the central phenyl ring provided a series of new active DAAN derivatives 9a-9e, indicating an accessible modification approach that could improve anti-HIV potency against wild-type and resistant strains, aqueous solubility, and metabolic stability. A new compound 9e not only exhibited extremely high potency against wild-type virus (EC(50) 0.53 nM) and several resistant viral strains (EC(50) 0.36-3.9 nM), but also showed desirable aqueous solubility and metabolic stability, which were comparable or better than those of the anti-HIV-1 drug TMC278 (2). Thus, new compound 9e might be a potential drug candidate for further development of novel next-generation NNRTIs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号