首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Histone Deacetylases are considered promising targets for cancer epigenetic therapy, and small molecules able to modulate their biological function have recently gained an increasing interest as potential anticancer agents. In spite of their potential application in cancer therapy, most HDAC inhibitors unselectively bind the several HDAC isoforms, giving rise to different side-effects. In this context, we have traced out the structural elements responsible of selective binding for the therapeutically relevant different HDAC isoforms. The structural analysis has been carried out by molecular modeling, docking in the binding pockets of HDAC1–4 and HDAC6–8, 36 inhibitors presenting a well defined selectivity for the different isoforms. As quick proof of evidence, we have designed, synthesized and experimentally tested three selective ligands. The experimental data suggest that the obtained structural guidelines can be useful tools for the rational design of new potent inhibitors against selected HDAC isoforms.  相似文献   

2.
A new method for cross-linking of protein was proposed in our previous work. The method is based on the spontaneous chelate formation process involving three components, salicylaldehyde moiety, alpha-amino acid residue and copper(II). In this paper versatility of the method as a purpose of immobilization of enzyme was described. Chymotrypsin-salicylaldehyde conjugate was immobilized to the agarose gel attached alpha-amino acid residue in the presence of copper(II) ion The enzyme was not eluted from the gel by washing with a copper free buffer though it was exclusively eluted by a medium containing EDTA. Catalytic activity of the chymotrypsin salicylaldehyde conjugate was not changed upon the immobilization. The method was proposed as a new tool for reversible immobilization of enzyme.  相似文献   

3.
CnrX is the metal sensor and signal modulator of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34 that is involved in the setup of cobalt and nickel resistance. We have determined the atomic structure of the soluble domain of CnrX in its Ni-bound, Co-bound, or Zn-bound form. Ni and Co ions elicit a biological response, while the Zn-bound form is inactive. The structures presented here reveal the topology of intraprotomer and interprotomer interactions and the ability of metal-binding sites to fine-tune the packing of CnrX dimer as a function of the bound metal. These data suggest an allosteric mechanism to explain how the complex is switched on and how the signal is modulated by Ni or Co binding. These results provide clues to propose a model for signal propagation through the membrane in the complex.  相似文献   

4.
A new method for intermolecular cross-linking or bridging of protein has been proposed. The method is based on the spontaneous chelate formation process involving three components, salicylaldehyde, alpha-amino acid residue and copper(II). Reliability of the process as a tool for protein cross-linking was evaluated by chromatographic procedures. Behavior of salicylaldehyde in a column packed with Sepharose attached alpha-amino acid residue showed that salicylaldehyde was bound tightly to the gel in the presence of copper(II) ion and was eluted by the addition of EDTA. The association was shown strong enough to be applied for the purpose of cross-linking of proteins. It was also proved that BSA salicylaldehyde conjugate was immobilized specifically to the column, and the process was reversed by the addition of EDTA as well. The method is proposed to be useful not only for immobilization of enzyme but also for cross-linking of proteins since the method is free from unexpected random coupling products which are unavoidable with bifunctional cross-linking reagents.  相似文献   

5.
6.
Hao B  Gong W  Rajagopalan PT  Zhou Y  Pei D  Chan MK 《Biochemistry》1999,38(15):4712-4719
While protein synthesis in bacteria begins with a formylated methionine, the formyl group of the nascent polypeptide is removed by peptide deformylase. Since eukaryotic protein synthesis does not involve formylation and deformylation at the N-terminus, there has been increasing interest in peptide deformylase as a potential target for antibacterial chemotherapy. Toward this end and to aid in the design of effective antibiotics targeting peptide deformylase, the structures of the protein-inhibitor complexes of both the cobalt and the zinc containing Escherichia coli peptide deformylase bound to the transition-state analogue, (S)-2-O-(H-phosphonoxy)-L-caproyl-L-leucyl-p-nitroanilide (PCLNA), have been determined. The proteins for both deformylase-inhibitor complexes show basically the same fold as for the native enzyme. The PCLNA inhibitor adopts an extended conformation and fits nicely into a hydrophobic cavity located near the metal site. On the basis of these structures, guidelines for the design of high-affinity deformylase inhibitors are suggested. As our results show that the protein residues which interact with the PCLNA inhibitor are conserved over a wide variety of species, we suggest that antibiotics targeting deformylase could have wide applicability.  相似文献   

7.
Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the "quick cryo-soaking" technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)8 barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu32, Asp34, Asp91, and solvent molecules. In the proposed acid base catalytic mechanism, His12 and His47 play key roles and are supported by a network of hydrogen bonds between Asp34, Asp52, Trp230, Asp233, and Asn252.  相似文献   

8.
9.
Parasites have developed a variety of strategies for invading hosts and escaping their immune response. A common mechanism by which parasites escape nitric oxide (NO) toxicity is the activation of host arginase. This activation leads to a depletion of l-arginine, which is the substrate for NO synthase, resulting in lower levels of NO and increased production of polyamines that are necessary for parasite growth and differentiation. For this reason, small molecule inhibitors for arginase show promise as new anti-parasitic chemotherapeutics. However, few arginase inhibitors have been reported. Here, we describe the discovery of novel irreversible arginase inhibitors, and their characterization using biochemical, kinetic, and structural studies. Importantly, we determined the site on human arginase that is labeled by one of the small molecule inhibitors. The tandem mass spectra data show that the inhibitor occupies the enzyme active site and forms a covalent bond with Thr135 of arginase. These findings pave the way for the development of more potent and selective irreversible arginase inhibitors.  相似文献   

10.
The Sir2 family of proteins consists of broadly conserved NAD(+)-dependent deacetylases that are implicated in diverse biological processes, including DNA regulation, metabolism, and longevity. Sir2 proteins are regulated in part by the cellular concentrations of a noncompetitive inhibitor, nicotinamide, that reacts with a Sir2 reaction intermediate via a base-exchange reaction to reform NAD(+) at the expense of deacetylation. To gain a mechanistic understanding of nicotinamide inhibition in Sir2 enzymes, we captured the structure of nicotinamide bound to a Sir2 homolog, yeast Hst2, in complex with its acetyl-lysine 16 histone H4 substrate and a reaction intermediate analog, ADP-HPD. Together with related biochemical studies and structures, we identify a nicotinamide inhibition and base-exchange site that is distinct from the so-called "C pocket" binding site for the nicotinamide group of NAD(+). These results provide insights into the Sir2 mechanism of nicotinamide inhibition and have important implications for the development of Sir2-specific effectors.  相似文献   

11.
Alpha-amylases are ubiquitous proteins which play an important role in the carbohydrate metabolism of microorganisms, animals and plants. Living organisms use protein inhibitors as a major tool to regulate the glycolytic activity of alpha-amylases. Most of the inhibitors for which three-dimensional (3-D) structures are available are directed against mammalian and insect alpha-amylases, interacting with the active sites in a substrate-like manner. In this review, we discuss the detailed inhibitory mechanism of these enzymes in light of the recent determination of the 3-D structures of pig pancreatic, human pancreatic, and yellow mealworm alpha-amylases in complex with plant protein inhibitors. In most cases, the mechanism of inhibition occurs through the direct blockage of the active center at several subsites of the enzyme. Inhibitors exhibiting "dual" activity against mammalian and insect alpha-amylases establish contacts of the same type in alternative ways.  相似文献   

12.
Metal complexes of aromatic/heterocyclic sulfonamides act as stronger inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to the uncomplexed sulfonamides from which they are derived. Here we report the synthesis and inhibition studies against the physiologically relevant isozymes CA I, CA II and CA IV, of a series of metal complexes (Co(II), Ni(II) and Cu(II) derivatives) of a Schiff-base ligand, obtained from sulfanilamide and salicylaldehyde. The best activity was observed for the Cu(II) and Co(II) complexes, against CA II and CA IV, for which inhibition constants in the range of 15-39 and 72-108nM, respectively, were seen. The enhanced efficacy in inhibiting the enzyme may be due to a dual mechanism of action of the metal complexes, which interact with CA both by means of the sulfonamide moieties as well as the metal ions present in their molecule.  相似文献   

13.
Bioconversion of sterols to 17-ketosteroids by anArthrobacter species occurred in the presence of hydrophobic metal-chelating agents but the production of 17-ketosteroids (17-KS) was seriously limited by the rapis loss of the viability of cells in the presence of these inhibitors. Besides, the conversion was inhibited by 17-KS at concentrations of 500 ppm or more. The 17-KS formed consisted exclusively of l,4-androstadiene-3,17-dione (ADD) and 4-androstene-3, 17-dione (AD) and these were found in the extracellular medium predominantly in bound form or as molecular aggregates which may limit their accumulation. It was concluded that enhanced production of 17-KS could be achieved by protecting the viability of cells and by removing the steroid metabolites from the site of inhibition.  相似文献   

14.
The matrix metalloproteinases (MMPs) constitute a family of multidomain zinc endopeptidases with a metzincin-like catalytic domain, which are involved in extracellular matrix degradation but also in a number of other important biological processes. Under healthy conditions, their proteolytic activity is precisely regulated by their main endogenous protein inhibitors, the tissue inhibitors of metalloproteinases. Disruption of this balance results in pathophysiological processes such as arthritis, tumor growth and metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and for rational drug design. Since the first appearance of atomic MMP structures in 1994, a large amount of structural information has become available on the catalytic domains of MMPs and their substrate specificity, interaction with synthetic inhibitors and the TIMPs, the domain organization, and on complex formation with other proteins. This review will outline our current structural knowledge of the MMPs and the TIMPs.  相似文献   

15.
BACKGROUND: ATP is the most common phosphoryl group donor for kinases. However, certain hyperthermophilic archaea such as Thermococcus litoralis and Pyrococcus furiosus utilize unusual ADP-dependent glucokinases and phosphofructokinases in their glycolytic pathways. These ADP-dependent kinases are homologous to each other but show no sequence similarity to any of the hitherto known ATP-dependent enzymes. RESULTS: We solved the crystal structure at 2.3 A resolution of an ADP-dependent glucokinase from T. litoralis (tlGK) complexed with ADP. The overall structure can be divided into large and small alpha/beta domains, and the ADP molecule is buried in a shallow pocket in the large domain. Unexpectedly, the structure was similar to those of two ATP-dependent kinases, ribokinase and adenosine kinase. Comparison based on three-dimensional structure revealed that several motifs important both in structure and function are conserved, and the recognition of the alpha- and beta-phosphate of the ADP in the tlGK was almost identical with the recognition of the beta- and gamma-phosphate of ATP in these ATP-dependent kinases. CONCLUSIONS: Noticeable points of our study are the first structure of ADP-dependent kinase, the structural similarity to members of the ATP-dependent ribokinase family, its rare nucleotide specificity caused by a shift in nucleotide binding position by one phosphate unit, and identification of the residues that discriminate ADP- and ATP-dependence. The strict conservation of the binding site for the terminal and adjacent phosphate moieties suggests a common ancestral origin of both the ATP- and ADP-dependent kinases.  相似文献   

16.
Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.  相似文献   

17.
The penta-coordinated vanadyl complexes [VO(ON)(2)] have been obtained by reaction between [VOX(2)] (X = acetylacetonate or chloride) and the Schiff base ligands HON = (R)-sal-am, (R)-Clsal-am and (S)-naph-am, where sal and naph are the salicylidene and naphthalidene moieties, and am derives from phenylethylamine. The three complexes and the ligand (R)-Clsal-am have been structurally characterized. The geometry of the complexes is in-between trigonal-bipyramidal (with the two imine functions in the axis) and square-pyramidal; tau values range from 0.66 to 0.44. Structural and EPR (electron paramagnetic resonance) features are in accord with the coordination environment proposed for the inactive, reduced (V(IV)) form of the bromoperoxidase from the marine brown alga Ascophyllum nodosum.  相似文献   

18.
The matrix metalloproteinases (MMPs) constitute a family of secreted/cell-surface-anchored multidomain zinc endopeptidases, all of which exhibit a catalytic domain of a common metzincin-like topology, and which are involved in degradation of the extracellular matrix but also in a number of other biologic processes. Normally, the proteolytic activity of the MMPs is precisely regulated by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumor growth, and tumor metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and their associations with dysfunctions. Since the reports of the first atomic structures of MMPs and TIMPs in 1994, considerable structural information has become available about both of these families of substances. Many of the MMP structures have been determined as complexes with synthetic inhibitors, facilitating knowledge-based drug design. This review focuses on the currently available 3D structural information about MMPs and TIMPs.  相似文献   

19.
In a project to find novel neutral P1 fragments for the synthesis of thrombin inhibitors with improved pharmacokinetic properties, fragments containing a benzothiazole guanidine scaffold were identified as weak thrombin inhibitors. WaterLOGSY (Water-Ligand Observed via Gradient SpectroscopY) NMR was used to detect fragments binding to thrombin and these fragments were followed up by Biacore A100 affinity measurements and enzyme assays. A crystal structure of the most potent compound with thrombin was obtained and revealed an unexpected binding mode as well as the key interactions of the fragment with the protein. Based on these results, the structure-based design and synthesis of a small series of optimized novel substituted benzothiazole guanidines with comparatively low pK(a) values was accomplished. Testing of these compounds against human trypsin I and human trypsin IV revealed unexpected inhibitory activity and selectivity of some of the compounds, making them attractive starting points for selective trypsin inhibitors.  相似文献   

20.
Since the onset of the AIDS epidemic, some 20 million people have died and the estimate is that today close to 40 million are living with type 1 human immunodeficiency virus (HIV)/AIDS. About 14 thousands people are infected worldwide daily with this disease. Still, only a few pharmaceuticals are available for AIDS chemotheraphy. Some pharmaceuticals act against the virus before the entrance of the HIV into the host cells. One of these targets is the glucosidase protein. This class of enzymes has been recently explored because the synthesis of viral glycoproteins depends on the activity of enzymes, such as glucosidase and transferase, for the elaboration of the polysaccharides. In this work we study several glucosidase inhibitors. The DFT method is used to compute atomic charges and the ligand/receptor interaction was simulated with docking software. Analysis of the interactions of the proposed pharmaceutical, a pseudodisaccharide, with the Thermotoga maritima 4-alpha-glucanotransferase in complex with modified acarbose, the scores from docking as well as the graphical superposition of all the ligands, suggest that our molecular designed pseudo-disaccharide may be a potent glucosidase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号