首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose

Trade is increasingly considered a significant contributor to environmental impacts. The assessment of the impacts of trade is usually performed via environmentally extended input–output analysis (EEIOA). However, process-based life cycle assessment (LCA) applied to traded goods allows increasing the granularity of the analysis and may be essential to unveil specific impacts due to traded products.

Methods

This study assesses the environmental impacts of the European trade, considering two modelling approaches: respectively EEIOA, using EXIOBASE 3 as supporting database, and process-based LCA. The interpretation of the results is pivotal to improve the robustness of the assessment and the identification of hotspots. The hotspot identification focuses on temporal trends and on the contribution of products and substances to the overall impacts. The inventories of elementary flows associated with EU trade, for the period 2000–2010, have been characterized considering 14 impact categories according to the Environmental Footprint (EF2017) Life Cycle Impact Assessment method.

Results and discussion

The two modelling approaches converge in highlighting that in the period 2000–2010: (i) EU was a net importer of environmental impacts; (ii) impacts of EU trade and EU trade balance (impacts of imports minus impacts of exports) were increasing over time, regarding most impact categories under study; and (iii) similar manufactured products were the main contributors to the impacts of exports from EU, regarding most impact categories. However, some results are discrepant: (i) larger impacts are obtained from IO analysis than from process-based LCA, regarding most impact categories, (ii) a different set of most contributing products is identified by the two approaches in the case of imports, and (iii) large differences in the contributions of substances are observed regarding resource use, toxicity, and ecotoxicity indicators.

Conclusions

The interpretation step is crucial to unveil the main hotspots, encompassing a comparison of the differences between the two methodologies, the assumptions, the data coverage and sources, the completeness of inventory as basis for impact assessment. The main driver for the observed divergences is identified to be the differences in the impact intensities of goods, both induced by inherent properties of the IO and life cycle inventory databases and by some of this study’s modelling choices. The combination of IO analysis and process-based LCA in a hybrid framework, as performed in other studies but generally not at the macro-scale of the full trade of a country or region, appears a potential important perspective to refine such an assessment in the future.

  相似文献   

2.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

3.
Purpose

Two life cycle assessment (LCA) studies comparing a new low-particulate-matter-emission disc brake and a reference disc brake were presented. The purpose was to identify the difference in potential environmental impacts due to a material change in the new disc brake parts. Additionally, the validity was investigated for the simplification method of omitting identical parts in comparative LCA. This was done by comparing the results between the simplified and the full LCA model.

Methods

The two disc brakes, new disc brake and reference disc brake, were assessed according to the LCA ISO standards. The ReCiPe 2016 Midpoint (hierarchist) impact assessment method was chosen. Simplifying a comparative LCA is possible, all identical parts can be omitted, and only the ones that differ need to be assessed. In this paper, this simplification was called comparative LCA with an omission of identical parts.

Results and discussion

The comparative impacts were analysed over seventeen impact categories. The new disc brake alternative used more resources during the manufacture of one disc compared to the reference disc brake alternative. The shorter life length of the reference disc demanded a higher number of spare part discs to fulfil the same functional unit, but this impact was reduced due to material recycling. The new disc brake impacts were connected primarily to the coating and secondly to the pad manufacture and materials. The validity of the simplification method was investigated by comparing the results of the two LCA models. The impact differences were identical independent of the LCA model, and the same significant impact categories could be identified. Hence, the purpose of the study could be fulfilled, and the simplification was valid.

Conclusions

Both LCA models, simplified and full, revealed that the new disc brake had limited environmental advantages. The omission of identical parts made it more challenging to determine if an impact was significant or insignificant. The simplification seemed to be reasonable.

  相似文献   

4.
Purpose

Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials.

Methods

Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet.

Result and discussion

In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet.

Conclusions

The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.

  相似文献   

5.
环境足迹的核算与整合框架——基于生命周期评价的视角   总被引:1,自引:0,他引:1  
方恺 《生态学报》2016,36(22):7228-7234
环境足迹及其与生命周期评价(LCA)的关系是工业生态学关注的新热点。从探讨环境足迹与LCA的关系入手,以碳足迹、水足迹、土地足迹和材料足迹为例,分别对每一项足迹指标两个版本的核算方法进行了比较。根据清单加和过程的特点,将所有足迹指标划分为基于权重因子和基于特征因子两类,总结了两者的适用性和局限性。在此基础上提出了一个环境足迹核算与整合的统一框架。该框架基于LCA视角建立,但对系统边界和清单数据的要求相对灵活,因而也适用于生命周期不甚明确的情形。研究在一定程度上揭示了足迹指标的方法学实质,同时也为环境影响综合评估提供了一条规范化的途径。  相似文献   

6.
Purpose

Changes in the production of Australian cotton lint are expected to have a direct environmental impact, as well as indirect impacts related to co-product substitution and induced changes in crop production. The environmental consequences of a 50% expansion or contraction in production were compared to Australian cotton production’s current environmental footprint. Both were then assessed to investigate whether current impacts are suitable for predicting the environmental impact of a change in demand for cotton lint.

Methods

A consequential life cycle assessment (LCA) model of Australian cotton lint production (cradle-to-gin gate) was developed using plausible scenarios regarding domestic regions and technologies affected by changes in supply, with both expansion (additional cotton) and contraction (less cotton) being modelled. Modelling accounted for direct impacts from cotton production and indirect impacts associated with changes to cotton production, including co-product substitution and changes to related crops at regional and global scales. Impact categories assessed included climate change, fossil energy demand, freshwater consumption, water stress, marine and freshwater eutrophication, land occupation and land-use change.

Results and discussion

For both the expansion and contraction scenarios, the changes to climate change impacts (including iLUC) and water impacts were less than would be assumed from current production as determined using attributional LCA. However, the opposite was true for all other impact categories, indicating trade-offs across the impact categories. Climate change impacts under both scenarios were relatively minor because these were largely offset by iLUC. Similarly, under the contraction scenario, water impacts were dominated by indirect impacts associated with regional crops. A sensitivity analysis showed that the results were sufficiently robust to indicate the quantum of changes that could be expected.

Conclusions

A complex array of changes in technologies, production regions and related crops were required to model the environmental impacts of a gross change in cotton production. Australian cotton lint production provides an example of legislation constraining the direct water impacts of production, leading to a contrast between impacts estimated by attributional and consequential LCA. This model demonstrated that indirect products and processes are important contributors to the environmental impacts of Australian cotton lint.

  相似文献   

7.

Purpose

Temporal variability is a major source of uncertainty in current life cycle assessment (LCA) practice. In this paper, the recently developed dynamic LCA approach is adapted to assess freshwater ecotoxicity impacts of metals. The objective is to provide relevant information regarding the distribution and magnitude of metal impacts over time and to show whether the dynamic approach significantly influences the conclusions of an LCA. An LCA of zinc fertilization in agriculture was therefore carried out.

Methods

Dynamic LCA is based on the temporal disaggregation of the inventory, which is then assessed using time-horizon-dependent characterization factors. The USEtox multimedia fate model is used to develop time-horizon-dependent characterization factors for the freshwater ecotoxicity impact of 18 metals. Mass balance equations are solved dynamically to obtain fate factors as a function of time, providing both instantaneous (impact at time t following a pulse emission) and cumulative (total time-integrated impact following a pulse emission) characterization factors (CFs).

Results and discussion

Time-horizon-dependent CFs for freshwater ecotoxicity depend on the emission compartment and the metal itself. The two variables clearly influence metal fate aspects such as the maximum mass loading reaching freshwater and the persistence time of metals into this compartment. The time needed to reach the total impact for each metal may exceed thousands of years, so the time horizon used in the analysis constitutes a determining factor. The case study reveals that the results of a classical LCA are always higher than those obtained from a dynamic LCA, especially for short time horizons. For instance, at the end of a 100-year fertilization treatment, only 25 % of the impacts obtained through traditional LCA occurred.

Conclusions

Results show that dynamic LCA enables assessing freshwater ecotoxicity impacts of metals over time, allowing decision makers to test the sensitivity of their results to the choice of a time horizon. For the particular case study of zinc fertilization over a period of 20 years, the use of time-horizon-dependent CFs is more important in determining the dynamics of impacts than the timing of emission.  相似文献   

8.
Purpose

One aim of LCA-based rating tools developed by the apparel industry is to promote a change in demand for textiles by influencing consumer preferences based on the environmental footprint of textiles. Despite a growing consensus that footprints developed using attributional LCA (aLCA) are not suitable to inform decisions that will impact supply and demand, these tools continue to use aLCA. This paper analyses the application of the LCA methods to wool production, specifically the application of aLCA methods that provide a retrospective assessment of impacts and consequential (cLCA) methods that estimate the impacts of a change.

Methods

Attributional and consequential life cycle inventories (LCIs) were developed and analysed to examine how the different methodological approaches affect the estimated environmental impacts of wool.

Results and discussion

Life cycle impact assessment (LCIA) of aLCI and cLCI for wool indicates that estimated global warming and water stress impacts may be considerably lower for additional production of wool, as estimated by cLCIA, than for current production as estimated by aLCIA. However, fossil resource impacts for additional production may be greater than for current production when increased wool production was assumed to displace dedicated sheep meat production.

Conclusions

This work supports the notion that the use of a retrospective assessment method (i.e. aLCA) to produce information that will guide consumer preferences may not adequately represent the impacts of a consumer’s choice because the difference between aLCIA and cLCIA results may be relatively large. As such, rating tools based on attributional LCA are unlikely to be an adequate indicator of the sustainability of textiles used in the apparel industry.

  相似文献   

9.

Purpose

A new biodegradable film, based on orange peel-derived pectin jelly and corn starch developed in our labs, was environmentally compared with a low-density polyethylene (LDPE) film. An environmental assessment was realized in two stages to individually determine the environmental impact resulting from production-shaping processes and the biodegradation performance of the films.

Methods

Firstly, a prospective cradle-to-gate life cycle assessment (LCA) was performed using a CML-IA method implemented in SimaPro 8.0.1. Secondly, an aerobic biodegradation was simulated as directly disposing of the films in soil according to ASTM D 5988–03. The functional unit considered in this study was 1 m2 of packaging film. The films were compared for impact categories of abiotic depletion (elements and fossil fuel), global warming potential, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. A Monte Carlo simulation was realized to determine the uncertainty levels. According to impact assessment results and major sources of uncertainties, two predictive improvement scenarios were performed for commercial scale production and compared with biocomposite film at the laboratory scale.

Results and discussion

LCA results show that biocomposite film has a slightly higher impact than LDPE film for all categories with probabilities ranging between 50 and 100 % except for acidification. The categories that have uncertainty (terrestrial ecotoxicity, abiotic depletion (element), photochemical oxidation, human toxicity, and fresh water aquatic ecotoxicity) were mainly resulted from electricity consumption for extrusion and film forming and modified starch addition. These two processes are mainly responsible for the environmental impact of the biocomposite film.

Conclusions

Prospective LCA showed that improvement of the process in this manner would decrease the environmental impact. On the other hand, the maximum level of biodegradation achieved in the biocomposite film is 78.4 %, whereas that for the LDPE film is 40.4 % with CO2 production rates of 1.97 and 1.17 mmol CO2/day, respectively.
  相似文献   

10.

Purpose

The aim of this study is to use life cycle assessment (LCA) to compare the relative environmental performance of the treatment using Trametes versicolor with a common method such as activated carbon adsorption. This comparison will evaluate potential environmental impacts of the two processes. This work compiles life cycle inventory data for a biological process that may be useful for other emergent biotechnological processes in water and waste management. LCA was performed to evaluate the use of a new technology for the removal of a model metal-complex dye, Grey Lanaset G, from textile wastewater by means of the fungus T. versicolor. This biological treatment was compared with a conventional coal-based activated carbon adsorption treatment to determine which alternative is preferable from an environmental point of view.

Materials and methods

The study is based on experimental research that has tested the novel process at the pilot scale. The analysis of the biological system ranges from the production of the electricity and ingredients required for the growth of the fungus and ends with the composting of the residual biomass from the process. The analysis of the activated carbon system includes the production of the adsorbent material and the electricity needed for the treatment and regeneration of the spent activated carbon. Seven indicators that measure the environmental performance of these technologies are included in the LCA. The indicators used are climate change, ozone depletion, human toxicity, photochemical oxidant formation, terrestial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, metal depletion and fossil depletion.

Results

The results show that the energy use throughout the biological process, mainly for sterilisation and aeration, accounts for the major environmental impacts with the inoculum sterilisation being the most critical determinant. Nevertheless, the biological treatment has lower impacts than the physicochemical system in six of these indicators when steam is generated directly on site. A low-grade carbon source as an alternative to glucose might contribute to reduce the eutrophication impact of this process.

Conclusions

The LCA shows that the biological treatment process using the fungus T. versicolor to remove Grey Lanaset G offers important environmental advantages in comparison with the traditional activated carbon adsorption method. This study also provides environmental data and an indication of the potential impacts of characteristic processes that may be of interest for other applications in the field of biological waste treatment and wastewater treatment involving white-rot fungi.  相似文献   

11.
Purpose

Energy consumption of buildings is one of the major drivers of environmental impacts. Life cycle assessment (LCA) may support the assessment of burdens and benefits associated to eco-innovations aiming at reducing these environmental impacts. Energy efficiency policies however typically focus on the meso- or macro-scale, while interventions are typically taken at the micro-scale. This paper presents an approach that bridges this gap by using the results of energy simulations and LCA studies at the building level to estimate the effect of micro-scale eco-innovations on the macro-scale, i.e. the housing stock in Europe.

Methods

LCA and dynamic energy simulations are integrated to accurately assess the life cycle environmental burdens and benefits of eco-innovation measures at the building level. This allows quantitatively assessing the effectiveness of these measures to lower the energy use and environmental impact of buildings. The analysis at this micro-scale focuses on 24 representative residential buildings within the EU. For the upscaling to the EU housing stock, a hybrid approach is used. The results of the micro-scale analysis are upscaled to the EU housing stock scale by adopting the eco-innovation measures to (part of) the EU building stock (bottom–up approach) and extrapolating the relative impact reduction obtained for the reference buildings to the baseline stock model. The reference buildings in the baseline stock model have been developed by European Commission-Joint Research Centre based on a statistical analysis (top–down approach) of the European housing stock. The method is used to evaluate five scenarios covering various aspects: building components (building envelope insulation), technical installations (renewable energy), user behaviour (night setback of the setpoint temperature), and a combined scenario.

Results and discussion

Results show that the proposed combination of bottom–up and top–down approaches allow accurately assessing the impact of eco-innovation measures at the macro-scale. The results indicate that a combination of policy measures is necessary to lower the environmental impacts of the building stock to a significative extent.

Conclusions

Interventions addressing energy efficiency at building level may lead to the need of a trade-off between resource efficiency and environmental impacts. LCA integrated with dynamic energy simulation may help unveiling the potential improvements and burdens associated to eco-innovations.

  相似文献   

12.
Purpose

The biosphere is progressively subjected to a variety of pressures resulting from anthropogenic activities. Habitat conversion, resulting from anthropogenic land use, is considered the dominant factor driving terrestrial biodiversity loss. Hence, adequate modelling of land use impacts on biodiversity in decision-support tools, like life cycle assessment (LCA), is a priority. State-of-the-art life cycle impact assessment (LCIA) characterisation models for land use impacts on biodiversity translate natural habitat transformation and occupation into biodiversity impacts. However, the currently available models predominantly focus on total habitat loss and ignore the spatial configuration of the landscape. That is, habitat fragmentation effects are ignored in current LCIAs with the exception of one recently developed method.

Methods

Here, we review how habitat fragmentation may affect biodiversity. In addition, we investigate how land use impacts on biodiversity are currently modelled in LCIA and how missing fragmentation impacts can influence the LCIA model results. Finally, we discuss fragmentation literature to evaluate possible methods to include habitat fragmentation into advanced characterisation models.

Results and discussion

We found support in available ecological literature for the notion that habitat fragmentation is a relevant factor when assessing biodiversity loss. Moreover, there are models that capture fragmentation effects on biodiversity that have the potential to be incorporated into current LCIA characterisation models.

Conclusions and recommendations

To enhance the credibility of LCA biodiversity assessments, we suggest that available fragmentation models are adapted, expanded and subsequently incorporated into advanced LCIA characterisation models and promote further efforts to capture the remaining fragmentation effects in LCIA characterisation models.

  相似文献   

13.
Purpose

The life-cycle assessment (LCA) method is typically applied to products, but the potential and demand for extending its use also to other applications are high. In this respect, this paper proposes an LCA concept to be used for the assessment of human beings as new study objects, namely Life-LCA. Key challenges of such a new approach and potential solutions for those are identified and discussed.

Methods

The Life-LCA concept was developed based on a detailed desktop research. Several Life-LCA-specific challenges were identified and categorized under three research questions. One of these questions focusses on the conceptual design of a Life-LCA method while the others are addressing operational issues, which are the definition of the new study system and the practical assessment of complex human consumption behaviors. Methodological solutions are proposed, e.g., based on suggestions provided in the existing methods product LCA and organizational LCA (O-LCA).

Results and discussion

Conceptual challenges arise from the general diversity, complexity, and temporal development of human lives and consumption behaviors. We introduce Life-LCA as a two-dimensional method that covers both, the new human life cycle (dimension 1) and the life cycle of the consumed products (dimension 2). Furthermore, the two types Individual Life-LCA and Lifestyle-LCA are differentiated. Especially, the definition of a general system boundary for Life-LCA and data collection and evaluation face many operational challenges. For example, the social behavior of human beings is a new factor to be considered which causes new allocation problems in LCA. Moreover, the high demand for aggregated LCA data requires specific rules for data collection and evaluation as well as a new bottom-up product clustering scheme.

Conclusions

Life-LCA, either used for the assessment of individual lives or lifestyles, has the potential to raise environmental awareness of people by making their specific environmental impacts comprehensively measurable and thus, tangible. However, many challenges need to be solved in future interdisciplinary research to develop a robust and applicable method. This paper conceptualizes such an approach and proposes solutions that can serve as a framework for ongoing method development.

  相似文献   

14.

Purpose

The interpretation is a fundamental phase of life cycle assessment (LCA). It ensures the robustness and the reliability of the overall study. Moving towards more circular economy requires that different waste management options are systematically scrutinized to assess the environmental impacts and benefits associated to them. The present work aims at illustrating how a sensitivity analysis could be applied to the impact assessment step supporting the interpretation of a LCA study applied to a waste management system that includes material recovering. The focus is on toxicity-related and resource-related potential impacts as they are considered among the most critical ones, which may affect the way the final benefit from material recovery is evaluated.

Methods

Possible alternatives in terms of impact assessment assumptions and modelling are tested by performing a sensitivity analysis on a case study on electric and electronic waste. For the toxicity-related impact categories, first, a sensitivity analysis is performed using different sets of characterization factors for metals aiming at identifying how they are affecting the final results. Then, an analysis of the relative contribution of long-term emissions in upstream processes is carried out aiming at unveiling critical issues associated to their inclusion or exclusion. For the resource depletion impact category, a sensitivity analysis has been performed, adopting different sets of characterization factors based on existing models for minerals and metals as well as recently proposed sets accounting for critical raw materials.

Results and discussion

The indicator of the ecotoxicity impact category obtained by applying the updated characterization factors is about three times higher than the corresponding obtained by the USEtox model. The long-term emission result is responsible for the major part of all the toxicity impact indicators. Moreover, for the ecotoxicity indicator, excluding the long-term emissions changes the total results from being negative into positive. The sensitivity analysis for the resource depletion impact category shows that all the models applied result in a total avoided impact. A quantitative comparison among all the results is not possible as the different models use different units of measure.

Conclusions

The application of LCA is crucial for assessing avoided impacts and uncovers potential impacts due to recycling. However, contrasting results may stem from the application of different assumptions and models for characterization. A robust interpretation of the results should be based on systematic assessment of the differences highlighted by the sensitivity, as guidance for delving into further analysis of the drivers of impacts and/or to steer ecoinnovation to reduce those impacts.
  相似文献   

15.
16.
Purpose

The environmental impacts of electricity generation are a critical issue towards sustainability and thus an important research topic in several countries. The life cycle assessment methodology has been widely employed to assess electricity generation. However, there are still gaps in research to be explored within this theme. Therefore, this paper aims to conduct a systematic theoretical analysis of the state of the art of the scientific research on LCA of electricity generation systems in the world.

Methods

A critical review of 47 studies was conducted. The study is comprehensive in the analysis of the main aspects of the identified high impact studies as follows: authors, countries, universities, keywords, journals, number of citations, life cycle impact assessment methods, impact categories, software tools, and databases. The Methodi Ordinatio was applied to rank the studies in terms of impact factor and number of citations, pointing out high impact research.

Results and discussion

Wind and solar powers have two of the smallest impact indices in their generation in terms of global warming, compared to other sources. The ecoinvent database was the most used among the studies analyzed, providing data for potential environmental impacts. The most frequently used impact category in the assessments was climate change. The studies are not equally distributed but most of them are concentrated in European countries. In some countries, clean sources seem promising due to their capacity to generate electricity in places with high wind incidence and high capacity for sunlight capture.

Conclusions

The conclusions of this article summarize the characteristics of existing literature and provide suggestions for future work. The results of the study can also be used to promote development actions and foment changes in energy matrices in a global context. The main studies in this area point that in the future, the main sources for electricity generation will be renewable ones, since life cycle assessment of electricity generation systems has been seeking to generate knowledge to support informed decision-making.

  相似文献   

17.
Purpose

Due to the urgency and the magnitude of the environmental problems caused by food supply chains, it is important that the recommendations for packaging improvements given in life cycle assessment (LCA) studies of food rest on a balanced consideration of all relevant environmental impacts of packaging. The purpose of this article is to analyse the extent to which food LCAs include the indirect environmental impact of packaging in parallel to its direct impact. While the direct environmental impact of food packaging is the impact caused by packaging materials’ production and end-of-life, its indirect environmental impact is caused by its influence on the food product’s life cycle, e.g. by its influence on food waste and on logistical efficiency.

Methods

The article presents a review of 32 food LCAs published in peer-reviewed scientific journals over the last decade. The steps of the food product’s life cycle that contribute to the direct and indirect environmental impacts of packaging provide the overall structure of the analytical framework used for the review. Three aspects in the selected food LCAs were analysed: (1) the defined scope of the LCAs, (2) the sensitivity and/or scenario analyses and (3) the conclusions and recommendations.

Results and discussion

While in packaging LCA literature, there is a trend towards a more systematic consideration of the indirect environmental impact of packaging, it is unclear how food LCAs handle this aspect. The results of the review show that the choices regarding scope and sensitivities/scenarios made in food LCAs and their conclusions about packaging focus on the direct environmental impact of packaging. While it is clear that not all food LCAs need to analyse packaging in detail, this article identifies opportunities to increase the validity of packaging-related conclusions in food LCAs and provides specific recommendations for packaging-related food LCA methodology.

Conclusions

Overall, we conclude that the indirect environmental impact of packaging is insufficiently considered in current food LCA practice. Based on these results, this article calls for a more systematic consideration of the indirect environmental impact of packaging in future food LCAs. In addition, it identifies a need for more packaging research that can provide the empirical data that many food LCA practitioners currently lack. In particular, LCA practitioners would benefit if there were more knowledge and data available about the influence of certain packaging characteristics (e.g. shape, weight and type of material) on consumer behaviour.

  相似文献   

18.

Purpose

Bioethanol is not currently produced in Chile. However, mixtures of bioethanol-gasoline at 2 and 5 % have been authorized. The production and use of the bioethanol-gasoline blend “E5” has been assessed using life cycle assessment (LCA) with the aim to compare the environmental profiles of bioethanol produced from Eucalyptus globulus with gasoline in Chile and to determine the potential of this biofuel-replacing gasoline in the transport sector.

Methods

The standard framework of LCA described by ISO was selected to assess the ecological burdens derived from the biofuel production using the SimaPro v7.8 software. The system boundaries included eucalyptus cultivation, bioethanol production, E5 blend production, and final use of E5. The inventory data for Eucalyptus cultivation were previously collected through surveys with forest managers. Inventory data for bioethanol production were obtained by process simulation models using Aspen Plus v7.1, and for non-simulated or modeled information, secondary information (scientific articles and reports) was used. Conventional gasoline, produced and used in Chile, was used as base scenario for comparison with E5 scenario.

Results and discussion

The environmental results showed reduction of the environmental impacts in most of the assessed categories when E5 blend is assessed and compared with gasoline. Reduction was evident for climate change, photochemical oxidation formation, terrestrial acidification, marine eutrophication, terrestrial ecotoxicity, marine ecotoxicity, depletion of water, and fossil resources. However, there was an increase in other impact categories, such as ozone layer depletion, human toxicity, terrestrial ecotoxicity, and marine eutrophication. The hotspots for E5 blend were the blending production and the combustion in the engine, whereas in the production process, the electricity production was the major contributor to most of the impact categories. When increasing the bioethanol content from E5 to E10 blend, the environmental impact increases in most of the evaluated categories except in the CC, WD, and FD categories. However, compared with other studies related to wood-based E10, the values for the environmental impacts obtained were lower than the reported.

Conclusions

The use of E5 blend can help to reduce the environmental impact in 8 of the 12 categories analyzed. Environmental impacts obtained are lower compared with other studies reported for E10 blend production from wood resources.
  相似文献   

19.
Purpose

Winter road maintenance in the Nordic climate is demanding due to challenging weather conditions, high precipitation, and icy conditions. As a leading country in the transition to low-emission transport, Norway must work to reduce their emissions while providing a safe level of service through winter maintenance operations. This article investigates the environmental impacts of winter road maintenance (WRM) in Norway both today and under a climate change scenario predicted for 2050.

Methods

Life cycle assessment (LCA) is used to evaluate the environmental impact of the functional unit “average winter road maintenance in Norway on national and county roads per km.lane.” The ReCiPe (hierarchy) method was used to identify and categorize emissions related to WRM to show how different factors affect the system and to reveal hidden emissions hotspots. Real-time data from WRM vehicles were used to determine how fuel consumption is affected by gradient and weather. Producers and operators provided other relevant information on WRM vehicles. Official reports supplied information on deicer quantities used and the total distance driven by WRM vehicles in Norway.

Results and discussion

The quantity of deicer used is the main source of emissions contributing toward all impact categories. The effect of deicer is likely to be even higher in certain impact categories. The environmental impact of the deicer after application is not included. The representation of WRM in existing emissions data is limited despite the considerable amount of deicer applied and the long distances that WRM vehicles travel. The results document how energy use throughout the system is another important source of emissions. Various parameters, such as road gradient, vehicle properties, driver behavior, and weather, affect the fuel consumption of WRM vehicles, with weather being the most important of these.

Conclusions

Significant potential for emissions reductions from WRM was found, and WRM operations should be included in cold-climate road LCA studies. The environmental impacts of deicer application are especially high compared to the mechanical clearing of roads and contribute strongly to impact categories such as terrestrial, freshwater, and human toxicity and to the formation of particulate matter.

  相似文献   

20.

Purpose

The environmental issue is a particular concern for chainsaw oils because these fluids represent a total loss system. The aim of this study is to quantify the environmental impacts of a biobased chainsaw oil made on the farm in Wallonia (a region of Belgium) and to compare it with a model mineral chainsaw oil. With this study, the aim is also to participate in the development of the life cycle assessment (LCA) methodology applied to the biolubricant sector since LCAs on these products are quite limited and rarely sufficiently detailed.

Method

In this LCA, the attributional approach is applied. Seven impact categories are studied. The methods for life cycle impact assessment are IPCC, ReCiPe, CML and USEtox. The functional unit is 1 kg of base oil. Seven sensitivity analyses are performed.

Results and discussion

Results indicate that the biobased chainsaw oil made on the farm has a lower impact for the global warming potential, the abiotic depletion potential, the ozone depletion potential and the photochemical oxidation potential. On the contrary, it has larger acidification, aquatic eutrophication and aquatic ecotoxicity potential impacts. Regarding the contribution of the life cycle stages of the biobased chainsaw oil, the agricultural stage causes the highest contribution in all impact categories. For the mineral chainsaw oil, the refining stage is preponderant for all impact categories except for the global warming potential for which the end-of-life stage contributes the most. When taking additives into account, conclusions regarding the comparison between the oils are not reversed. Even if it was necessary to consume more biobased than mineral chainsaw oil, conclusions regarding the comparison of the oils would not be reversed. In the same way, a different allocation procedure for rapeseed oil and rape meal, a different rape seeds yield or different extraction yields in the refining stage of the mineral base oil do not change the results of the comparison. For the biobased chainsaw oil, the substitution of only one active substance in the agricultural stage could result in an important decrease of the freshwater ecotoxicity impact.

Conclusions

The biobased chainsaw oil has a lower impact in four out of the seven impact categories and a higher impact in three impact categories. By providing a detailed LCA on a biobased chainsaw oil, this study contributes to the development of LCA applied to biobased lubricants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号