首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《MABS-AUSTIN》2013,5(6):625-638
We report preclinical data for CEP-37247, the first human framework domain antibody construct to enter the clinic. At approximately 11 – 13kDa, domain antibodies or dAbs are the smallest antibody domain able to demonstrate the antigen-recognition function of an antibody, e.g. high selectivity and affinity for target antigen. CEP-37247 is a bivalent anti-tumor necrosis factor (TNF)α domain antibody protein construct combining the antigen-recognition function of a dAb with the pharmacological advantages of an antibody Fc region. As a homodimer, with each chain comprising VL dAb, truncated CH1, hinge, CH2 and CH3 domains, CEP-37247 has a molecular mass of approximately 78kDa, which is about half the size of a conventional IgG molecule. Surface plasmon resonance data demonstrate that CEP-37247 possesses high selectivity and affinity for TNFα. CEP-37247 is a potent neutralizer of TNFα activity in vitro in the L929 TNF-mediated cytotoxicity assay. In a human TNFα-over-expressing mouse model of polyarthritis, CEP-37247 prevents development of disease, and is at least as effective as the marketed product etanercept. Fc functionality is intact – CEP-37247 is capable of mediating antibody-dependent cell-mediated cytotoxicity and has a circulating half-life of approximately 4.5 days in cynomolgus macaques. Given the favorable properties outlined above, and its high expression levels (approaching 7 g/L) in a CHOK1 based-expression system, CEP-37247 is progressing into the clinic, where other potential advantages such as enhanced efficacy due to improved tissue distribution, and beneficial immunogenicity profile, will be evaluated.  相似文献   

2.

Background

Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1) phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition.

Methodology/Principal Finding

Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701) as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta) protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells.

Conclusions/Significance

Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.  相似文献   

3.
FLT3/ITD mutation signaling includes suppression of SHP-1   总被引:2,自引:0,他引:2  
Mutations in the FLT3 gene are the most common genetic alteration found in AML patients. FLT3 internal tandem duplication (ITD) mutations result in constitutive activation of FLT3 tyrosine kinase activity. The consequences of this activation are an increase in total phosphotyrosine content, persistent downstream signaling, and ultimately transformation of hematopoietic cells to factor-independent growth. The Src homology (SH)2 domain-containing protein-tyrosine phosphatase (SHP)-1 is involved in the down-regulation of a broad range of growth factor and cytokine-driven signaling cascades. Loss-of-function or deficiency of SHP-1 activity results in a hyperproliferative response of myelomonocytic cell populations to growth factor stimulation. In this study, we examined the possible role of SHP-1 in regulating FLT3 signaling. We found that transformation of TF-1 cells with FLT3/ITD mutations suppressed the activity of SHP-1 by approximately 3-fold. Suppression was caused by decreased SHP-1 protein expression, as analyzed at both the protein and RNA levels. In contrast, protein levels of SHP-2, a phosphatase that plays a stimulatory role in signaling through a variety of receptors, did not change significantly in FLT3 mutant cells. Suppressed SHP-1 protein levels in TF-1/ITD cells were partially overcome after cells were exposed to CEP-701, a selective FLT3 inhibitor. SHP-1 protein levels also increased in naturally occurring FLT3/ITD expressing AML cell lines and in primary FLT3/ITD AML samples after CEP-701 treatment. Furthermore, a small but reproducible growth/survival advantage was observed in both TF-1 and TF-1/ITD cells when SHP-1 expression was knocked down by RNAi. Taken together, these data provide the first evidence that suppression of SHP-1 by FLT3/ITD signaling may be another mechanism contributing to the transformation by FLT3/ITD mutations.  相似文献   

4.
We report preclinical data for CEP-37247, the first human framework domain antibody construct to enter the clinic. At approximately 11–13 kDa, domain antibodies or dAbs are the smallest antibody domain able to demonstrate the antigen-recognition function of an antibody, e.g., high selectivity and affinity for target antigen. CEP-37247 is a bivalent anti-tumor necrosis factor (TNF)α domain antibody protein construct combining the antigen-recognition function of a dAb with the pharmacological advantages of an antibody Fc region. As a homodimer, with each chain comprising VL dAb, truncated CH1, hinge, CH2 and CH3 domains, CEP-37247 has a molecular mass of approximately 78 kDa, which is about half the size of a conventional IgG molecule. Surface plasmon resonance data demonstrate that CEP-37247 possesses high selectivity and affinity for TNFα. CEP-37247 is a potent neutralizer of TNFα activity in vitro in the L929 TNF mediated cytotoxicity assay. In a human TNFα-overexpressing mouse model of polyarthritis, CEP-37247 prevents development of disease and is at least as effective as the marketed product etanercept. Fc functionality is intact—CEP-37247 is capable of mediating antibody-dependent cell-mediated cytotoxicity and has a circulating half-life of approximately 4.5 days in cynomolgus macaques. Given the favorable properties outlined above and its high expression levels (approaching 7 g/L) in a CHOK1 based-expression system, CEP-37247 is progressing into the clinic where other potential advantages, such as enhanced efficacy due to improved tissue distribution and beneficial immunogenicity profile, will be evaluated.Key words: CEP-37247, ART621, domain antibody, dAbs, anti-TNFα, Fc construct  相似文献   

5.
Amino acids were transformed and coupled to chlorambucil, a well-known chemotherapeutic agent, in an attempt to create new anticancer drugs with selectivity for breast cancer cells. Among the amino acids available, tyrosine was selected to act as an estrogenic ligand. It is hypothesized that tyrosine, which shows some structural similitude with estradiol, could possibly mimic the natural hormone and, subsequently, bind to the estrogen receptor. In this exploratory study, several tyrosine-drug conjugates have been designed. Thus, ortho-, meta- and para-tyrosine-chlorambucil analogs were synthesized in order to generate new anticancer drugs with structural diversity, more specifically in regards to the phenol group location. These new analogs were produced in good yield following efficient synthetic methodology. All the tyrosine-chlorambucil hybrids were more effective than the parent drug, chlorambucil. In vitro biological evaluation on estrogen receptor positive and estrogen receptor negative (ER(+) and ER(-)) breast cancer cell lines revealed an enhanced cytotoxic activity for compounds with the phenol function located at position meta. Molecular docking calculations were performed for the pure L-ortho, L-meta- and L-para-tyrosine phenolic regioisomers. The synthesis of all tyrosine-chlorambucil hybrid regioisomers and their biological activity are reported herein. Possible orientations within the targeted protein [estrogen receptor alpha (ERα)] are discussed in relation to the biological activity.  相似文献   

6.
Tropomyosin-related kinase A (TrkA) receptor mediates the effects exerted by nerve growth factor on several subpopulations of neuronal cells. Ligand binding to TrkA induces receptor autophosphorylation on several tyrosine residues and the activation of signaling cascades. In this study, we describe a new site relevant for TrkA regulation, the tyrosine 701 (Y701), which is important for receptor trafficking and activation. Y701 replacement by aspartate or phenylalanine reduces receptor internalization rate and decreases the colocalization and association of TrkA with clathrin heavy chain, demonstrating that Y701 constitutes a YxxΦ (YRKF701–704) trafficking motif relevant for the regulation of receptor endocytosis. In accordance with this hypothesis, the colocalization of Y701 mutant receptors with a lysosomal marker is also reduced giving support to the involvement of the YRKF701–704 motif in the lysosomal targeting of TrkA receptors. Contrary to what was expected, substitution of Y701 for an Asp in order to mimic phosphorylation, impairs TrkA ability to mediate nerve growth factor-induced differentiation, although the mutant receptor retains its in vitro kinase activity. This is the first evidence that a Tyr residue can simultaneously regulate TrkA receptor trafficking and activity.  相似文献   

7.
Structure–activity relationship (SAR) studies on a highly potent series of arylamide FMS inhibitors were carried out with the aim of improving FMS kinase selectivity, particularly over KIT. Potent compound 17r (FMS IC50 0.7 nM, FMS cell IC50 6.1 nM) was discovered that had good PK properties and a greater than fivefold improvement in selectivity for FMS over KIT kinase in a cellular assay relative to the previously reported clinical candidate 4. This improved selectivity was manifested in vivo by no observed decrease in circulating reticulocytes, a measure of bone safety, at the highest studied dose. Compound 17r was highly active in a mouse pharmacodynamic model and demonstrated disease-modifying effects in a dose-dependent manner in a strep cell wall-induced arthritis model of rheumatoid arthritis in rats.  相似文献   

8.
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.  相似文献   

9.

Background

One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2.

Methodology and/or Principal Findings

We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel.

Conclusions

Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.  相似文献   

10.
Fibromyalgia Syndrome (FMS) is a chronic disease characterized by widespread pain, and difficult to diagnose and treat. We analyzed the plasma metabolic profile of patients with FMS by using a metabolomics approach combining Liquid Chromatography-Quadrupole-Time Of Flight/Mass Spectrometry (LC-Q-TOF/MS) with multivariate statistical analysis, aiming to discriminate patients and controls. LC-Q-TOF/MS analysis of plasma (FMS patients: n = 22 and controls: n = 21) identified many lipid compounds, mainly lysophosphocholines (lysoPCs), phosphocholines and ceramides. Multivariate statistical analysis was performed to identify the discriminating metabolites. A protein docking and molecular dynamic (MD) study was then performed, using the most discriminating lysoPCs, to validate the binding to Platelet Activating Factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) Receptor (PAFr). Discriminating metabolites between FMS patients and controls were identified as 1-tetradecanoyl-sn-glycero-3-phosphocholine [PC(14∶0/0∶0)] and 1-hexadecanoyl-sn-glycero-3-phosphocholine [PC(16∶0/0∶0)]. MD and docking indicate that the ligands investigated have similar potentialities to activate the PAFr receptor. The application of a metabolomic approach discriminated FMS patients from controls, with an over-representation of PC(14∶0/0∶0) and PC(16∶0/0∶0) compounds in the metabolic profiles. These results and the modeling of metabolite-PAFr interaction, allowed us to hypothesize that lipids oxidative fragmentation might generate lysoPCs in abundance, that in turn will act as PAF-like bioactivators. Overall results suggest disease biomarkers and potential therapeutical targets for FMS.  相似文献   

11.
Agonists of the 5-HT(2C) receptor have attracted much attention as therapeutic agents for the treatment of obesity. Subtype selectivity against other 5-HT(2) receptors is one of the most important prerequisites for reducing side effects. We present the synthesis of N-methyl-N-(1-methylpiperidin-4-yl)benzenesulfonamide analogs and their structure-activity relationship studies on 5-HT(2A) and 5-HT(2C) receptors. Although the compounds showed nanomolar activity to the 5-HT(2C) receptor, their selectivity against the 5-HT(2A) receptor was modest to low. Molecular modeling studies using homology modeling and docking simulation revealed that selectivity originated from subtype specific residues. The observed binding modes and receptor-ligand interactions provided us a clue for optimizing the selectivity against the 5-HT(2A) receptor.  相似文献   

12.
We recently reported that synthetic derivatives of rutaecarpine alkaloid exhibited high acetyl cholinesterase (AChE) inhibitory activity and high selectivity for AChE over butyrylcholinesterases (BuChE). To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), in this paper, further research results were presented. Starting from a structure-based drug design, a series of novel 2-(2-indolyl-)-4(3H)-quinazolines derivates were designed and synthesized as the ring-opened analogues of rutaecarpine alkaloid and subjected to pharmacological evaluation as AChE inhibitors. Among them, derivates 3a–c and 3g–h exhibited strong inhibitory activity for AChE and high selectivity for AChE over BuChE. The structure–activity relationships were discussed and their binding conformation and simultaneous interactions mode were further clarified by kinetic characterization and the molecular docking studies.  相似文献   

13.
The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr–Abl, fail to effectively suppress the Bcr–Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr–Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.  相似文献   

14.
Introduction of an alkylcarboxylic acid unit, which is a partial structure of endogenous peroxisome proliferator-activated receptor (PPAR) ligands, into a phenethylphenylphthalimide skeleton, which possesses liver X receptor (LXR) antagonistic activity, afforded novel PPAR ligands. The results of structure-activity relationship analysis and docking studies led us to the potent PPAR agonists 13c-e. The absolute configuration of 13c-e affects the PPAR subtype selectivity.  相似文献   

15.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

16.
Abstract Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y(1)-Y(5) and y(6). Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

17.
18.
Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them.  相似文献   

19.
CEP-1347 (KT7515) promotes neuronal survival at dosages that inhibit activation of the c-Jun amino-terminal kinases (JNKs) in primary embryonic cultures and differentiated PC12 cells after trophic withdrawal and in mice treated with 1-methyl-4-phenyl tetrahydropyridine. In an effort to identify molecular target(s) of CEP-1347 in the JNK cascade, JNK1 and known upstream regulators of JNK1 were co-expressed in Cos-7 cells to determine whether CEP-1347 could modulate JNK1 activation. CEP-1347 blocked JNK1 activation induced by members of the mixed lineage kinase (MLK) family (MLK3, MLK2, MLK1, dual leucine zipper kinase, and leucine zipper kinase). The response was selective because CEP-1347 did not inhibit JNK1 activation in cells induced by kinases independent of the MLK cascade. CEP-1347 inhibition of recombinant MLK members in vitro was competitive with ATP, resulting in IC(50) values ranging from 23 to 51 nm, comparable to inhibitory potencies observed in intact cells. In addition, overexpression of MLK3 led to death in Chinese hamster ovary cells, and CEP-1347 blocked this death at doses comparable to those that inhibited MLK3 kinase activity. These results identify MLKs as targets of CEP-1347 in the JNK signaling cascade and demonstrate that CEP-1347 can block MLK-induced cell death.  相似文献   

20.
A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号