首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Adipogenesis involves a highly orchestrated series of complex events in which microRNAs (miRNAs) may play an essential role. In this study, we found that the miR-185 expression increased gradually during 3T3-L1 cells differentiation. To explore the role of miR-185 in adipogenesis, miRNA agomirs and antagomirs were used to perform miR-185 overexpression and knockdown, respectively. Overexpression of miR-185 dramatically reduced the mRNA expression of the adipogenic markers, PPARγ, FABP4, FAS, and LPL, and the protein level of PPARγ and FAS. MiR-185 overexpression also led to a notable reduction in lipid accumulation. In contrast, miR-185 inhibition promoted differentiation of 3T3-L1 cells. By target gene prediction and luciferase reporter assay, we demonstrated that sterol regulatory element binding protein 1 (SREBP-1) may be the target of miR-185. These results indicate that miR-185 negatively regulates the differentiation of 3T3-L1 cells by targeting SREBP-1, further highlighting the importance of miRNAs in adipogenesis.  相似文献   

3.
Four new lanostane triterpenes, butyl lucidenate P (1), butyl lucidenate D2 (2), butyl lucidenate E2 (3) and butyl lucidenate Q (4) along with 11 known compounds (515) were isolated from the fruiting bodies of Ganoderma lucidum. Their chemical structures were established mainly by 1D and 2D NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against LPS-induced NO production in macrophage RAW 264.7 cells. Compounds 1, 3, 4, 9, 10 and 15 showed inhibitory potency with IC50 values of 7.4, 6.4, 4.3, 9.4, 9.2 and 4.5 μM, respectively. Compounds 1, 3 and 15 dose-dependently reduced the LPS-induced iNOS expressions. Preincubation of cell with 1, 3 and 15 significantly suppressed LPS-induced expression of COX-2 protein.  相似文献   

4.

Background

Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood.

Objective

As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes.

Methods and Results

The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished.

Conclusions

Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.  相似文献   

5.
6.
dlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear. It has been reported that different Dlk1 mRNA spliced variants, encoding for isoforms possessing the protease-target sequence or not, determine the production of membrane-associated or soluble, secreted extracellular dlk1 proteins that appear to affect adipogenesis of 3T3-L1 cells differently. In particular, only soluble variants inhibit this process. Some recent evidence suggest that dlk1 may modulate extracellular stimuli inducing differentiation. Thus, an enforced decrease of Dlk1 expression in BALB/c 3T3 cells, which results in an increase of their adipogenic potential in response to insulin-like growth factor 1 (IGF-1), modifies the kinetics and levels of activation of ERK1/2 triggered by it. In this work, we identified a strong and specific interaction between the protease-target dlk1 region and the non-IGF binding region of IGF binding protein 1 (IGFBP1), a protein that binds to IGFs and modulates their action. We also observed that the increased adipogenic potential of 3T3-L1 cells caused by diminishing Dlk1 expression through transfection with an antisense Dlk1 expression construct was inhibited by the presence of IGFBP1 in the differentiation medium. On the other hand, the presence of IGFBP1 in the culture medium slightly increased the adipogenic potential of control 3T3-L1 cells, expressing regular levels of Dlk1. These data suggest that membrane dlk1 variants bind to extracellular IGFBP1/IGF-1 complexes, which may favor the release of IGF-1 and increase the local concentration of free IGF-1 that can enhance IGF receptor signaling, leading to adipogenesis.  相似文献   

7.
We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-alpha (LXRalpha) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRalpha mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRalpha mRNA but is associated with decreased insulin sensitivity.  相似文献   

8.
Lipogenesis is considered less active in human than in rat adipose tissue. This could be explained by different nutritional conditions, namely high-carbohydrate (HCHO) diet in rats and high-fat (HF) diet in humans. Adipose tissue was sampled (postabsorptive state) in rats and humans receiving HCHO or HF diets, ad libitum fed humans, and obese subjects. We measured 1) mRNA concentrations of fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), sterol regulatory element binding protein 1c (SREBP-1c), and carbohydrate response element binding protein (ChREBP), 2) SREBP-1c protein, and 3) FAS activity. FAS, ACC1, ChREBP, and SREBP1-c mRNA concentrations were unaffected by diet in humans or in rats. FAS and ACC1 mRNA levels were lower in humans than in rats (P < 0.05). FAS activity was unaffected by diet and was lower in humans (P < 0.05). SREBP-1c mRNA concentrations were similar in rats and humans, but the precursor and mature forms of SREBP-1c protein were less abundant in humans (P < 0.05). ChREBP mRNA concentrations were lower in humans than in rats. In conclusion, the lipogenic capacity of adipose tissue is lower in humans than in rats. This is not related to differences in diet and is probably explained by lower abundance of SREBP-1c protein. A decreased expression of ChREBP could also play a role.  相似文献   

9.
Hydroxysafflor yellow A (HSYA), a main component of safflor yellow, has been demonstrated to prevent steroid-induced avascular necrosis of femoral head by inhibiting primary bone marrow-derived mesenchymal stromal cells adipogenic differentiation induced by steroid. In this study, we investigate the effect of HSYA on the proliferation and adipogenesis of mouse 3T3-L1 preadipocytes. The effects of HSYA on proliferation and differentiation of 3T3-L1 cells and its possible mechanism were studied by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative RT-PCR, transient transfection and dual luciferase reporter gene methods. HSYA inhibited the proliferation of 3T3-L1 preadipocytes and cell viability greatly decreased in a dose and time dependent manner. HSYA (1 mg/l) notably reduced the amount of intracellular lipid and triglyceride content in adipocytes by 21.3 % (2.13 ± 0.36 vs 2.71 ± 0.40, P < 0.01) and 22.6 % (1.33 ± 0.07 vs 1.72 ± 0.07, P < 0.01) on days 8 following the differentiation, respectively. HSYA (1 mg/l) significantly increased hormone-sensitive lipase (HSL) mRNA expression and promoter activities by 2.4- and 1.55-fold, respectively (P < 0.01), in differentiated 3T3-L1 adipocytes. HSYA inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes. The inhibitory action of HYSA on adipogenesis may be due to the promotion of lipolytic-specific enzyme HSL expression by increasing HSL promoter activity.  相似文献   

10.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is expressed in adipocytes and is proposed to be involved in the regulation of glucose tolerance and atherosclerosis in type 2 diabetes, because L-PGDS gene knock-out mice show abnormalities in these functions. However, the role of L-PGDS and the regulation mechanism governing its gene expression in adipocytes remain unclear. Here, we applied small interference RNA of L-PGDS to mouse 3T3-L1 cells and found that it suppressed differentiation of these cells into adipocytes. Reporter analysis of the mouse L-PGDS promoter demonstrated that a responsive element for liver receptor homolog-1 (LRH-1) at -233 plays a critical role in preadipocytic 3T3-L1 cells. Moreover, we identified two sterol regulatory elements (SREs) at -194 to be cis-elements for activation of L-PGDS gene expression in adipocytic 3T3-L1 cells. L-PGDS mRNA was induced in response to synthetic liver X receptor agonist, T0901317, through activation of the expression of SRE-binding protein-1c (SREBP-1c) in the adipocytic 3T3-L1 cells. The results of electrophoretic mobility shift assay and chromatin immunoprecipitation assay revealed that LRH-1 and SREBP-1c bound to their respective binding elements in the promoter of L-PGDS gene. Small interference RNA-mediated suppression of LRH-1 or SREBP-1c decreased L-PGDS gene expression in preadipocytic or adipocytic 3T3-L1 cells, respectively. These results indicate that L-PGDS gene expression is activated by LRH-1 in preadipocytes and by SREBP-1c in adipocytes. Liver X receptor-mediated up-regulation of L-PGDS through activation of SREBP-1c is a novel path-way to enhance adipocyte differentiation.  相似文献   

11.
Recently, obesity is a complex multifactorial chronic disease increasing the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. In the course of screening natural products employing 3T3-L1 cells as an in vitro system, the methanol extract of Idesia polycarpa Maxim. Fruits (Flacourtiaceae) significantly inhibited adipocyte differentiation by measuring lipid contents using oil red O staining. One new compound, 6-(oxymethyl)-2-hydroxyphenyl-O-β-d-glucopyranosyl-(1  6)-β-d-glucopyranoside (8), was isolated along with nine known compounds (17 and 910) from CHCl3 and n-BuOH fractions of the methanol extract of I. polycarpa fruits. Among them, idescarpin (1) with 1-hydroxy-6-oxo-2-cyclohexenecarboxylate moiety showed the most potent inhibitory activity on adipocyte differentiation with IC50 values of 23.2 μM. Idescarpin (1) dramatically suppressed the induction of C/EBPα expression, whereas it significantly increased the induction of PPARγ expression, supported by quantitative real time PCR and Western blot analysis. The down-regulation in mRNA levels of SREBP1c, SCD-1, and FAS by idescarpin (1) during adipocyte differentiation revealed that the inhibition of adipocyte differentiation was mediated by the regulation of lipogenesis. Taken together, we suggest that idescarpin (1) shows a great potential against obesity and diabetes though the anti-adipogenic activity and the up-regulation of PPARγ.  相似文献   

12.
13.
Stress hormone is known to play a vital role in lipolysis and adipogenesis in fat cells. The present study was carried out to evaluate the effect of epinephrine on adipogenesis in the 3T3-L1 cells. The investigation on adipogenesis was done in both mono and co-cultured 3T3-L1 cells. 3T3-L1 preadipocytes and C2C12 cells were grown independently on transwell plates and transferred to differentiation medium. Following differentiation, C2C12 cells transferred to 3T3-L1 plate and treated with medium containing 10 μg/ml of epinephrine. Adipogenic markers such as fatty acid binding protein 4, peroxisome proliferator activating receptor, CCAAT/enhancer-binding protein, adiponectin, lipoprotein lipase and fatty acid synthase mRNA expressions were evaluated in the 3T3-L1 cells. Epinephrine treatment reduced adipogenesis, evidenced by reducing adipogenic marker mRNA expression in the 3T3-L1 cells. In addition, glycerol accumulation and oil red-O staining supported the reduced rate of adipogenesis. Taking all together, it is concluded that the stress hormone, epinephrine reduces the rate of adipogenesis in the mono and co-cultured 3T3-L1 cells. In addition, the rate of adipogenesis is much reduced in the co-cultured 3T3-L1 cells compared monocultured 3T3-L1 cells.  相似文献   

14.
Abnormal lipid metabolism and SREBP-1 downregulation are reported to be involved in the pathogenesis of diabetic peripheral neuropathy (DPN). In the current study, the relationship between PI3K/Akt signaling pathway and SREBP-1 expression was explored in Schwann cells of DPN. The phospho-Akt (Ser 473), phospho-Akt (Thr 308), and SREBP-1 expression were inhibited in the sciatic nerves of diabetic mice versus those of normal mice, accompanied with the atrophy of nerve fiber and the irregular myelin sheath. High concentration glucose suppressed phospho-Akt (Ser 473), phospho-Akt (Thr 308), and SREBP-1 expression in cultured Schwann cell (RSC96 cell) in vitro, and 25 mmol/L glucose was enough to lead to the maximum inhibitory effect. The time-course effect of high glucose showed that Akt phosphorylation gradually decreased with the extension of stimulation time. Somewhat differently, short-term high-glucose exposure enhanced SREBP-1 expression and prolonged high-glucose stimulation reduced the SREBP-1 expression in RSC96 cells. Similarly, prolonged high-glucose stimulation also downregulated FASN messenger RNA (mRNA), ACC mRNA, intracellular triglyceride, and cholesterol. LY294002 suppressed Akt activation followed by the decreased SREBP-1, FASN, ACC, triglyceride, and cholesterol. Contrarily, the PI3K/Akt signaling pathway agonist insulin pretreatment avoided prolonged high-glucose stimulation-blocked Akt activation and increased SREBP-1, FASN, and ACC expression in the levels of protein and mRNA in RSC96 cells. The knockdown of SREBP-1 by shRNA prevented insulin-induced enhanced FASN, ACC mRNA expression, triglyceride, and cholesterol in high-glucose-treated RSC96 cells. In conclusion, prolonged high-glucose exposure inhibits the SREBP-1/FASN/ACC expression in the Schwann cells of DPN via the blockage of the PI3K/Akt signaling pathway.  相似文献   

15.
16.
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.  相似文献   

17.
18.
Zinc deficiency impairs the hepatic lipid metabolism. Previous studies were focused on the negative effects of zinc deficiency on the hepatic lipid metabolism. A few studies investigated the effects of high zinc levels on the lipid metabolism in hepatocytes. In this study, rat hepatocytes were cultured and treated with different and high concentrations of zinc to investigate the effects of high zinc levels on the lipid synthesis in hepatocytes in vitro. The levels of hepatocytes functional markers, including alkaline phosphatase, lactate dehydrogenase, and albumin, were significantly higher in the zinc treatment groups than in the control group (p?<?0.05, p?<?0.01). The mRNA and protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) were significantly higher in the zinc treatment groups than in the control group (p?<?0.05, p?<?0.01). Furthermore, the mRNA expression levels of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS) were significantly higher in the medium- and high-dose zinc treatment groups than in the control group (p?<?0.01). The mRNA levels of stearoyl-CoA desaturase-1 (SCD-1) were significantly higher in the high-dose group (p?<?0.01). These results indicate that high levels of zinc increase hepatocytes activity and SREBP-1c expression, which upregulate the expression of ACC1, FAS, and SCD-1, thereby improving the lipid metabolism in the hepatocytes.  相似文献   

19.
We demonstrate that expression of the myocardial lipid droplet protein (MLDP) and ERα observed in adipose tissues is undetectable in 3T3-L1 cells but detectable in mouse embryonic fibroblasts (MEFs) and stromal-vascular cells (SVCs) during adipocyte differentiation. MLDP gene expression in MEFs or SVCs is induced by treatment with a PPARγ agonist or forced expression of PPARγ, indicating that PPARγ enhances MLDP expression during adipogenesis. PCR analyses reveal the dual expression of SREBP-1a and SREBP-1c in MEFs and SVCs as well as white adipose tissues unlike the predominant expression of SREBP-1a in 3T3-L1 cells. These results suggest that MEFs and SVCs are useful model cells for examining function of MLDP in lipid droplet formation and adipocyte differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号