首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialyl Lewis antigens are selectin ligands involved in leukocyte trafficking and cancer metastasis. Biosynthesis of these selectin ligands occurs by the sequential actions of several glycosyltransferases in the Golgi apparatus following synthesis of the protein backbone in the endoplasmic reticulum. In this study, we examine how the synthesis of sialyl Lewis a (sLea) is regulated in prostatic cells and identify a mucin that carries this glycotope. We treat human prostatic cells including one normal and three cancerous cells with histone deacetylase inhibitors, valproic acid, tricostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA), and then monitor the expression of sLea. We have found that SAHA enhances the production of sLea in normal prostatic RWPE-1 cells but not prostatic cancer cells. Employing siRNA technology and co-immunoprecipitation, we show that the sLea is associated with MUC1, which is confirmed by confocal immunofluorescence microscopy and proximity ligation assay. The SAHA-induced production of sLea in RWPE-1 cells is resulted from upregulation of B3GALT1 gene via enhancement of acetylated histone-3 and histone-4. Interestingly, PC3 and LNCaP C-81 cells do not produce detectable amounts of sLea despite expressing high levels of B3GALT1. However, the MUC1-associated sLea is generated in these cells after introduction of MUC1 cDNA. We conclude that the synthesis of sLea is controlled by not only peptide backbone of the glycoprotein but also glycoprotein-specific glycosyltransferases involved in the synthesis of sLea. Further, the SAHA induction of this selectin ligand in normal prostatic cells may pose a potentially serious side effect of this drug recently approved by the US Food and Drug Administration.  相似文献   

2.
Sialyl Lewis X (sLex) antigen functions as a common carbohydrate determinant recognized by all three members of the selectin family. However, its expression and function in mice remain undefined due to the poor reactivity of conventional anti-sLex monoclonal antibodies (mAbs) with mouse tissues. Here, we developed novel anti-sLex mAbs, termed F1 and F2, which react well with both human and mouse sLex, by immunizing fucosyltransferase (FucT)-IV and FucT-VII doubly deficient mice with 6-sulfo-sLex-expressing cells transiently transfected with an expression vector encoding CMP-N-acetylneuraminic acid hydroxylase. F1 and F2 specifically bound both the N-acetyl and the N-glycolyl forms of sLex as well as 6-sulfo-sLex, a major ligand for L-selectin expressed in high endothelial venules, and efficiently blocked physiological lymphocyte homing to lymph nodes in mice. Importantly, both of the mAbs inhibited contact hypersensitivity responses not only when administered in the L-selectin-dependent sensitization phase but also when administered in the elicitation phase in mice. When administered in the latter phase, F1 and F2 efficiently blocked rolling of mouse leukocytes along blood vessels expressing P- and E-selectin in the auricular skin in vivo. Consistent with these findings, the mAbs blocked P- and E-selectin-dependent leukocyte rolling in a flow chamber assay. Taken together, these results indicate that novel anti-sLex mAbs reactive with both human and mouse tissues, with the blocking ability against leukocyte trafficking mediated by all three selectins, have been established. These mAbs should be useful in determining the role of sLex antigen under physiological and pathological conditions.  相似文献   

3.
The limited efficacy of monocyte-derived dendritic cell (mo-DC)-based vaccines is primarily attributed to the reduced mo-DC migratory capacity. One undefined aspect is the initial binding of mo-DCs to endothelial cells and vascular selectins. In this study, we investigated the role and modulation of the selectin binding determinant sialyl Lewisx (sLex) in selectin-dependent mo-DC binding. Our data reveal that sLex is required for maximal binding of mo-DCs to tumor necrosis factor (TNF)-α-activated endothelial cells under static conditions, as evidenced by the use of sialidase. Sialidase treatment also abrogated mo-DC cell tethering to immobilized, purified P-, L-, or E-selectin under flow. The requirement of sLex-dependent binding of mo-DC to selectins was further substantiated by using sLex free sugar and anti-sLex antibody, which significantly suppressed mo-DC-selectin binding. P-selectin glycoprotein ligand-1 is required for mo-DC binding to both P- and L-selectin, but it is dispensable for E-selectin recognition. Interestingly, the extent of mo-DC tethering was maximal on P-selectin, followed by E- and L- selectin. Accordingly, L-selectin mediated faster mo-DC rolling than E- or P-selectin. Interferon (IFN)-γ induces a significant increase in mo-DC surface sLex expression, which is probably due to the enhanced synthesis of C2GnT-I. These findings may contribute to improving mo-DC-based vaccination protocols.  相似文献   

4.
The membrane carbohydrate antigen, sialyl Lewis x (sLex), is involved in cellular adhesive interactions in many diseases, such as cancer, inflammation and thrombosis. This antigen is also found on soluble macromolecules, such as serum glycoproteins, but the precise role of soluble sLex in modifying disease processes, or reflecting the pathological changes is still unclear. Although methods were previously reported for the measurement of soluble sLex, many of these were not well characterised, measurements were mainly made on mixtures of molecules, and the anti-sLex antibodies were used at concentrations that made the assay expensive. In this study an ELISA has been devised that detects sLex in purified soluble glycoconjugates using the anti-sLex antibody, CSLEX 1. Commercially-available haptoglobin (Hp) and synthetic complexes of Lewis antigens with polyacrylamide were used as model substances in developing the procedure. Key steps were washing the antibody/antigen complex with ten times diluted salt solution to prevent dissociation of the complex and the use of bovine serum albumin for blocking non-specific interactions. The assay was shown to be very specific, its precision was in the range 6–12%, and it could detect less than a pmol of sLex. It could also distinguish between different densities of sLex on the same amount of glycoconjugate. Determination of sLex in Hp isolated from small groups of healthy individuals, cancer patients, and rheumatoid arthritis sufferers suggested that the antigen expression is increased in disease. This method, which is an improvement on those previously described, will be useful for determining sLex in many different types of soluble glycoconjugate, and used in combination with synthetic carbohydrate polyacrylamide complexes, will help to standardize measurements of soluble sLex in the future.  相似文献   

5.
Both infiltrating leukocytes and soluble immunoglobulin form aggregates in synovial fluid during the inflammatory process in rheumatoid arthritis (RA). Some of these changes are probably mediated by the adhesion molecule, E-selectin, which increases its expression with disease activity. As glycosylation changes in IgG in RA are well established, the current study was undertaken to measure the expression of the carbohydrate antigen sialyl Lewis x (sLex), on IgG in RA. sLex is a major ligand for E-selectin. Using a recently developed ELISA, sLex expression was determined in IgG isolated from 8 healthy individuals, 20 RA sufferers (10 early and 10 with more long-standing disease) and 20 patients with other rheumatic conditions (osteoarthritis, ankylosing spondylitis, systemic lupus erythematosus). S Lexexpression on IgG was elevated above the reference range in all but one of the RA patients and this change was highly significant (P < 0.0006). Expression of this antigen on IgG was also significantly different from normal in the other arthritic groups (P < 0.02), but the changes were much less than that observed for RA. In early RA, sLex was inversely correlated with parameters used to measure disease activity. This was not observed with the established RA, where there was weak positive association. These preliminary results indicate that a change in sLex expression on IgG is an early finding in the development of RA, which may be important in the development of the disease or for predicting its outcome.  相似文献   

6.
7.
We have recently elucidated a novel function for CD82 in E-cadherin-mediated homocellular adhesion; due to this function, it can inhibit cancer cell dissociation from the primary cancer nest and limit metastasis. However, the effect of CD82 on selectin ligand-mediated heterocellular adhesion has not yet been elucidated. In this study, we focused on the effects of the metastasis suppressor CD82/KAI1 on heterocellular adhesion of cancer cells to the endothelium of blood vessels in order to further elucidate the function of tetraspanins. The over-expression of CD82 in cancer cells led to the inhibition of experimentally induced lung metastases in mice and significantly inhibited the adhesion of these cells to human umbilical vein epithelial cells (HUVECs) in vitro. Pre-treatment of the cells with function-perturbing antibodies against sLea/x significantly inhibited the adhesion of CD82-negative cells to HUVECs. In addition, cells over-expressing CD82 exhibited reduced expression of sLea/x compared to CD82-negative wild-type cells. Significant down-regulation of ST3 β-galactoside α-2, 3-sialyltransferase 4 (ST3GAL4) was detected by cDNA microarray, real-time PCR, and western blotting analyses. Knockdown of ST3GAL4 on CD82-negative wild-type cells inhibited expression of sLex and reduced cell adhesion to HUVECs. We concluded that CD82 decreases sLea/x expression via the down-regulation of ST3GAL4 expression and thereby reduces the adhesion of cancer cells to blood vessels, which results in inhibition of metastasis.  相似文献   

8.

Background

During inflammation, leukocytes are captured by the selectin family of adhesion receptors lining blood vessels to facilitate exit from the bloodstream. E-selectin is upregulated on stimulated endothelial cells and binds to several ligands on the surface of leukocytes. Selectin:ligand interactions are mediated in part by the interaction between the lectin domain and Sialyl-Lewis x (sLex), a tetrasaccharide common to selectin ligands. There is a high degree of homology between selectins of various species: about 72 and 60 % in the lectin and EGF domains, respectively. In this study, molecular dynamics, docking, and steered molecular dynamics simulations were used to compare the binding and dissociation mechanisms of sLex with mouse and human E-selectin. First, a mouse E-selectin homology model was generated using the human E-selectin crystal structure as a template.

Results

Mouse E-selectin was found to have a greater interdomain angle, which has been previously shown to correlate with stronger binding among selectins. sLex was docked onto human and mouse E-selectin, and the mouse complex was found to have a higher free energy of binding and a lower dissociation constant, suggesting stronger binding. The mouse complex had higher flexibility in a few key residues. Finally, steered molecular dynamics was used to dissociate the complexes at force loading rates of 2000–5000 pm/ps2. The mouse complex took longer to dissociate at every force loading rate and the difference was statistically significant at 3000 pm/ps2. When sLex-coated microspheres were perfused through microtubes coated with human or mouse E-selectin, the particles rolled more slowly on mouse E-selectin.

Conclusions

Both molecular dynamics simulations and microsphere adhesion experiments show that mouse E-selectin protein binds more strongly to sialyl Lewis x ligand than human E-selectin. This difference was explained by a greater interdomain angle for mouse E-selectin, and greater flexibility in key residues. Future work could introduce similar amino acid substitutions into the human E-selectin sequence to further modulate adhesion behavior.
  相似文献   

9.
During the process of lymphocyte recirculation, lymphocytes bind via L-selectin to sulfated sialyl-Lewisx (sLex)–containing carbohydrate ligands expressed on the surface of high endothelial venules (HEV). We have examined the expression of sLex on HEV using a panel of mAbs specific for sLex and sLex-related structures, and have examined the function of different sLex-bearing structures using an in vitro assay of lymphocyte rolling on HEV. We report that three sLex mAbs, 2F3, 2H5, and CSLEX-1, previously noted to bind with high affinity to glycolipid-linked sLex, vary in their ability to stain HEV in different lymphoid tissues and bind differentially to O-linked versus N-linked sLex on glycoproteins. Treatment of tissue sections with neuraminidase abolished staining with all three mAbs but slightly increased staining with MECA-79, a mAb to a sulfation-dependent HEV-associated carbohydrate determinant. Treatment of tissue sections with O-sialoglycoprotease under conditions that removed the vast majority of MECA-79 staining, only partially reduced staining with the 2F3 and 2H5 mAbs. Using a novel rolling assay in which cells bind under flow to HEV of frozen tissue sections, we demonstrate that a pool of O-sialoglycoprotease–resistant molecules is present on HEV that is sufficient for attachment and rolling of lymphocytes via L-selectin. This interaction is not inhibited by the mAb MECA-79. Furthermore, MECA-79 mAb blocks binding to untreated sections by only 30%, whereas the sLex mAb 2H5 blocks binding by ~60% and a combination of MECA-79 and 2H5 mAb blocks binding by 75%. We conclude that a pool of O-glycoprotease-resistant sLex-like L-selectin ligands exist on human HEV that is distinct from the mucin-associated moieties recognized by MECA-79 mAb. We postulate that these ligands may participate in lymphocyte binding to HEV.  相似文献   

10.
Leukocyte cell surface sialyl Lewis x (sLex) and related epitopes play an important role in cell rolling and adhesion during diapedesis via interaction with E-selectin. Here, we present evidence that Mac-1 (CD11b/CD18, CR-3) is a major neutrophil glycoprotein decorated with sLex and ligation of these carbohydrate moieties by anti-sLex antibody significantly impairs neutrophil functions. First, Western blot analysis shows that both CD11b and CD18 subunit of purified Mac-1 are decorated with sLex moieties. A significant co-localization of CD11b and sLex moieties is observed at neutrophil secondary granules. With stimulation of formyl-Met-Leu-Phe (fMLP), neutrophil surface labeling with anti-sLex antibody follows an identical up-regulation pattern of Mac-1. Second, protein-binding assays indicate that sLex moieties on Mac-1 are critical for binding interaction of Mac-1 to E-selectin. Removal of sLex moieties completely abolishes Mac-1-E-selectin binding. Finally, ligation of Mac-1 sLex by anti-sLex antibody induces a significant degranulation of neutrophil secondary granules at the absence of chemoattractant stimulation. This “dysregulated” degranulation induced by anti-sLex antibody strongly inhibits neutrophil transmigration in response to fMLP. In summary, Mac-1 sLex moieties play a critical role in regulating β2 integrin functions during neutrophil transmigration and degranulation.  相似文献   

11.
Sialyl Lewisa (sLea), also termed CA19-9 antigen, is recognized by murine mAb19-9 and is expressed on the cancer cell surface as a glycolipid and as an O-linked glycoprotein. It is highly expressed in a variety of gastrointestinal epithelial malignancies including colon cancer and pancreatic cancer, and in breast cancer and small cell lung cancer, but has a limited expression on normal tissues. sLea is known to be the ligand for endothelial cell selectins suggesting a role for sLea in cancer metastases and adhesion. For these reasons, sLea may be a good target for antibody mediated immunotherapy including monoclonal antibodies and tumor vaccines. However, sLea is structurally similar to sLex and other blood group related carbohydrates which are widely expressed on polymorphonucleocytes and other circulating cells, raising concern that immunization against sLea will induce antibodies reactive with these more widely expressed autoantigens. We have shown previously both in mice and in patients that conjugation of a variety of carbohydrate cancer antigen to keyhole limpet hemocyanin (KLH) and administration of this conjugate mixed with saponin adjuvants QS-21 or GPI-0100 are the most effective methods for induction of antibodies against these cancer antigens. We describe here for the first time the total synthesis of pentenyl glycoside of sLea hexasaccharide and its conjugation to KLH to construct a sLea-KLH conjugate. Groups of five mice were vaccinated subcutaneously four times over 6 weeks. Sera were tested against sLea-HSA by ELISA and against sLea positive human cell lines adenocarcinoma SW626 and small cell lung cancer (SCLC) DMS79 by FACS. As expected, mice immunized with unconjugated sLea plus GPI-0100 or unconjugated sLea mixed with KLH plus GPI-0100 failed to produce antibodies against sLea. However, mice immunized with sLea-KLH conjugate without GPI-0100 produced low levels of antibodies and mice immunized with sLea-KLH plus GPI-0100 produced significantly higher titer IgG and IgM antibodies against sLea by ELISA. These antibodies were highly reactive by FACS and mediated potent complement mediated cytotoxicity against sLea positive SW626 and DMS79 cells. They showed no detectable cross reactivity against a series of other blood group-related antigens, including Ley, Lex, and sLex by dot blot immune staining. This vaccine is ready for testing as an active immunotherapy for treating sLea positive cancer in clinical settings. Govind Ragupathi and Philip O. Livingston are paid consultants and shareholders in MabVax Therapeutics, Inc., San Diego, CA 92121. The sLea vaccine is licensed to MabVax.  相似文献   

12.
Activated platelets are known to express P-selectin, a lectin-likeadhesion receptor (CD62), through which they bind to sialylLewis X (sLex) ligands displayed on the membranes of leukocytes.To determine whether direct platelet-platelet interactions viaP-selectin/sLex interactions are also possible, we have examinedthe ganglioside extract of human blood platelets for the presenceof sLex ligands. Using the sensitive method of high-performancethin-layer chromatography (HPTLC)-immunostaining with the monoclonalantibody (mAb) CSLEX or with sialidase followed by mAbs MC480or PM81, eight sLex bands were demonstrated at R1 0.01, 0.03,0.05, 0.06, 0.08, 0.10, 0.14 and 0.21 in the solvent 45:55:10chloroform-methanol-aqueous 0.02% CaCl2. The sensitivity ofall eight bands to sialidase or endoglycoceramidase confirmedthat they were gangliosides. Comparison of the HPTLC mobilitiesand densities of platelet bands with those from five other humantissues (granulocytes, monoblasts, kidney, aortic endotheliumand erythrocytes) in three different solvents revealed threemajor bands associated with platelets: 3 (R1 0.03), 6 (0.08)and 14 (0.21). Platelet bands were demonstrated not to haveresulted from granulocyte contamination. Partial purificationof platelet sLex gangliosides by high-performance liquid chromatographyand their reaction with 14 oligosaccharide-specific mAbs (FH4,FH5, LM112-161, LM-181, A5, 1B2, BR55-2, BE2, ES4, MC631, MH04,SH34, P001 and MC813-70) revealed that band 6 is a multifucosylatedneolacto ganglioside and band 14 is a branched, disialo neolactofucoganglioside. Platelet band 3 combined the features of bothbands 6 and 14, and reacted differently than granulocyte band3. These partial structures resemble gangliosides associatedwith adhesion in other cell systems. It is concluded that plateletsexpress tissue-specific sLex gangliosides (sLex ligands). Thus,it is possible that platelet-platelet binding may be mediatedat least partially through P-selectin/sLex interactions, especiallyafter platelet activation. gangliosides HPTLC-immunostaining platelets selectin ligands sLex  相似文献   

13.

Background

Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers.

Methodology/Principal Findings

Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium.

Conclusion/Significance

This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.  相似文献   

14.
Lewis antigens belong to the blood group of antigens and mediate cellular adhesion through interaction with selectins. Invasive trophoblasts use an array of adhesion molecules to facilitate cell–cell and cell–extracellular matrix interactions. Here, we examined immunohistochemically the expression of Sialyl Lewis a (sLea), Sialyl Lewis x (sLex) and Lewis y (Ley) in term placentas obtained from cases of normal, intrauterine growth retardation (IUGR), preeclamptic (PE) and hemolysis, elevated liver enzymes and low platelets syndrome (HELLP) pregnancies. We report the expression of sLex in third trimester extravillous trophoblasts (EVT). sLex was significantly decreased in IUGR and moderately decreased in PE compared to normal placentas. sLex was additionally found in syncytiotrophoblast, without however any significant differences in staining intensity between normal and pathological cases. sLea was restricted to amnion epithelium. Finally, Ley was expressed in cytotrophoblasts and villous endothelial cells. Ley expression was significantly upregulated in IUGR and HELLP, whereas there was a trend toward increase in PE compared to normal placentas. The present study suggests that downregulation of sLex in EVT might be associated with IUGR and PE. Furthermore, Ley, which was recently described as a potent angiogenic factor, is upregulated in placental villi in conditions associated with placental malperfusion. U. Jeschke and A. Makrigiannakis have contributed equally.  相似文献   

15.
Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumour progression and metastases. Altered expression of glycosidic antigens has been reported in cervical cancer. In cervix premalignant lesions, an increased expression of sialic acid has been reported. In the present study we determined the expression profiles of the glycosidic antigens Tn, sialyl Tn (sTn), Lewis a (Lea), sialyl Lewis a (sLea), Lewis x (Lex) and sialyl Lewis x (sLex) in cervical scrapes with cytological diagnoses of normal, low-grade squamous intraepithelial lesions (LGSIL) and high-grade squamous intraepithelial lesions (HGSIL). Cervical scrapings were collected to detect tumour antigens expressions by flow cytometry using monoclonal antibodies. Cytometry analysis of Tn, sTn, Lea and Lex did not reveal differences at the expression level among groups. The number of positive cells to sLea antigen increased in the HGSIL group with respect to the normal group (p?=?0.0495). The number of positive cells to sLex antigen in the samples increased with respect to the grade of squamous intraepithelial lesion (SIL) (p?<?0.001, Mann–Whitney U test). The intensity of expression of this antigen increased in the HGSIL samples with respect to normal samples (p?<?0.0068). sLex antigen could be a candidate to be used as biomarker for the early diagnosis of cervical cancer.  相似文献   

16.
17.
Diagnosis of cardiovascular disease is currently limited by the testing modality. Serum tests for biomarkers can provide quantification of severity but lack the ability to localize the source of the cardiovascular disease, while imaging technology such as angiography and ultrasound can only determine areas of reduced flow but not the severity of tissue ischemia. Targeted imaging with ultrasound contrast agents offers the ability to locally image as well as determine the degree of ischemia by utilizing agents that will cause the contrast agent to home to the affected tissue. Ultrasound molecular imaging via targeted microbubbles (MB) is currently limited by its sensitivity to molecular markers of disease relative to other techniques (e.g., radiolabeling). We hypothesize that computational modeling may provide a useful first approach to maximize microbubble binding by defining key parameters governing adhesion. Adhesive dynamics (AD) was used to simulate the fluid dynamic and stochastic molecular binding of microbubbles to inflamed endothelial cells. Sialyl LewisX (sLex), P‐selectin aptamer (PSA), and ICAM‐1 antibody (abICAM) were modeled as the targeting receptors on the microbubble surface in both single‐ and dual‐targeted arrangements. Microbubble properties (radius [Rc], kinetics [kf, kr], and densities of targeting receptors) and the physical environment (shear rate and target ligand densities) were modeled. The kinetics for sLex and PSA were measured with surface plasmon resonance. Rc, shear rate, and densities of sLex, PSA, or abICAM were varied independently to assess model sensitivity. Firm adhesion was defined as MB velocity <2% of the free stream velocity. AD simulations revealed an optimal microbubble radius of 1–2 µm and thresholds for (>102 s?1) and (<10?3 s?1) for firm adhesion in a multi‐targeted system. State diagrams for multi‐targeted microbubbles suggest sLex and abICAM microbubbles may require 10‐fold more ligand to achieve firm adhesion at higher shear rates than sLex and PSA microbubbles. The AD model gives useful insight into the key parameters for stable microbubble binding, and may allow flexible, prospective design, and optimization of microbubbles to enhance clinical translation of ultrasound molecular imaging. Biotechnol. Bioeng. 2010;107: 854–864. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
P-selectin glycoprotein ligand-1 (PSGL-1) has been proposed as an important tethering ligand for E-selectin and is expressed at a modest level on human leukocytes. Sialyl Lewis x (sLex)-like glycans bind to E-selectin and are expressed at a relatively high level on circulating leukocytes. It is unclear whether PSGL-1 has unique biochemical attributes that contribute to its role as an E-selectin ligand. To probe this issue, we conjugated microspheres with either sLex or PSGL-1 purified from myeloid cells (neutrophils and HL-60) and compared their adhesion to endothelial expressed E-selectin under defined shear conditions. We found that both sLex and PSGL-1 microspheres adhere to 4 h of IL-1-activated human umbilical vein endothelial cells predominantly through E-selectin. Analysis of the adhesion revealed that the rate of initial tethering of the PSGL-1 microspheres to E-selectin was significantly greater than the rate of initial tethering of the sLex microspheres despite the fact that the sLex microspheres tested had higher ligand densities than the PSGL-1 microspheres. We also found that pretreatment of the PSGL-1 or sLex microspheres with HECA-452 had no significant effect on initial tethering to E-selectin. These results support the hypotheses that 1) PSGL-1 is a high-efficiency tethering ligand for E-selectin, 2) ligand biochemistry can significantly influence initial tethering to E-selectin, and 3) PSGL-1 tethering to E-selectin can occur via non-HECA-452 reactive epitopes. adhesion; leukocyte; inflammation  相似文献   

19.
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilum binding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection.  相似文献   

20.
Therole of the sialyl Lewisx (sLex)-decoratedversion of soluble complement receptor type 1 (sCR1) in moderatingskeletal muscle reperfusion injury, by antagonizing neutrophilendothelial selectin interaction and complement activation, isexamined. Mice underwent 2 h of hindlimb ischemia and3 h of reperfusion. Permeability index (PI) was assessed byextravasation of 125I-labeled albumin. Neutrophil depletionand complement inhibition with sCR1 reduced permeability by 72% (PI0.81 ± 0.10) compared with a 42% decrease (PI 1.53 ± 0.08)observed in neutropenic mice, indicating that part of thecomplement-mediated injury is neutrophil independent.sCR1sLex treatment reduced PI by 70% (PI 0.86 ± 0.06), an additional 20% decrease compared with sCR1 treatment (PI1.32 ± 0.08). Treatment with sCR1sLex 0.5 and 1 h after reperfusion reduced permeability by 63% (PI 0.09 ± 0.07)and 52% (PI 1.24 ± 0.09), respectively, compared with therespective decreases of 41% (PI 1.41 ± 0.10) and 32% (PI1.61 ± 0.07) after sCR1 treatment. Muscle immunohistochemistry stained for sCR1 only on the vascular endothelium ofsCR1sLex-treated mice. In conclusion, sCR1sLexis more effective than sCR1 in moderating skeletal muscle reperfusion injury.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号