首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen novel hybrids containing diterpene skeleton and nitric oxide (NO) donor were prepared from isosteviol. All the compounds were tested on preliminary cytotoxicity, and the results showed that six target compounds (8c, 10b, 14a, 14c, 18c, and 18d) exhibited anti-proliferation activity on HepG2 cells, with 8c (IC50 = 4.24 μM) and 18d (IC50 = 2.75 μM) superior to the positive control CDDO-Me (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-acid methyl ester, IC50 = 4.99 μM); eleven target compounds (8ac, 9ac, 10ab, 14a, 14c, 18d) exhibited anti-proliferation activities on B16F10 cells at different levels, among them, seven compounds were more potent than comptothecin (IC50 = 2.78 μM) and CDDO-Me (IC50 = 5.85 μM), particularly, 10b (IC50 = 0.02 μM) presented the strongest effect, which was selected as a candidate for further study.  相似文献   

2.
A series of Schiff base triazoles 125 was synthesized and evaluated for their nucleotide pyrophosphatase/phosphodiesterase-1 inhibitory activities. Among twenty-five compounds, three compounds 10 (IC50 = 132.20 ± 2.89 μM), 13 (IC50 = 152.83 ± 2.39 μM), and 22 (IC50 = 251.0 ± 6.64 μM) were identified as potent inhibitors with superior activities than the standard EDTA (IC50 = 277.69 ± 2.52 μM). The newly identified inhibitors may open a new avenue for the development of treatment of phosphodiesterase-I related disorders. These compounds were also evaluated for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitory potential and were found to be inactive. The compounds showed non-toxic effect towards PC3 cell lines.  相似文献   

3.
Histone deacetylases (HDACs) are enzymes involved in tumor genesis and development. Herein, we report a novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as HDACs inhibitors. The preliminary biological screening showed that most of our compounds exhibited potent inhibitory activity against HDACs. Within this series, five compounds, 13a (IC50 = 0.58 ± 0.10 μM), 7d (IC50 = 1.00 ± 0.16 μM), 8l (IC50 = 1.06 ± 0.14 μM), 7i (IC50 = 1.17 ± 0.19 μM) and 7a (IC50 = 1.29 ± 0.15 μM) possessed better HDACs inhibitory activity than Vorinostat (IC50 = 1.48 ± 0.20 μM). So these five compounds could be used as novel lead compounds for further design of HDACs inhibitors. The anti-proliferative activities of a few compounds and the structure–activity relationships are also briefly discussed.  相似文献   

4.
A novel series of anilinoquinazoline compounds with C-6 urea-linked side chains was designed and synthesized as reversible inhibitors of epidermal growth factor receptor (EGFR) based on the structure–activity relationships (SARs) of anilinoquinazoline inhibitors. All compounds demonstrated good inhibition of EGFR wild type (EGFR wt) (IC50 = 0.024–1.715 μM) and inhibited proliferation of A431cell line (IC50 = 0.116–22.008 μM). The binding mode of compounds 8a, 8d, 8k and 8o was consistent with the biological results. Moreover, compounds 8k and 8l almost completely blocked the phosphorylation of EGFR in A431 cell line at 0.01 μM. Interestingly, all of the compounds also demonstrated moderate inhibition of EGFR/T790M/L858R (IC50 = 0.049–5.578 μM). In addition, compounds 8f and 8h blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (10 μM), and compound 8f was confirmed to be an irreversible inhibitor through the dilution method. Importantly, the compounds with C-6 urea-linked side chains which did not contain Michael acceptors demonstrated moderate to strong irreversible EGFR inhibition.  相似文献   

5.
Two series of novel naphthalin-containing pyrazoline derivatives C1C14 and D1–D14 have been synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. Compound D14 displayed the most potent activity against EGFR and A549 cell line (IC50 = 0.05 μM and GI50 = 0.11 μM), being comparable with the positive control Erlotinib (IC50 = 0.03 μM and GI50 = 0.03 μM) and more potent than our previous compounds C0–A (IC50 = 5.31 μM and GI50 = 33.47 μM) and C0–B (IC50 = 0.09 μM and GI50 = 0.34 μM). Meanwhile, compound C14 displayed the most potent activity against HER-2 and MCF-7 cell line (IC50 = 0.88 μM and GI50 = 0.35 μM), being a little less potent than Erlotinib (IC50 = 0.16 μM and GI50 = 0.08 μM) but far more potent than C0–A (IC50 = 6.58 μM and GI50 = 27.62 μM) and C0–B (IC50 = 2.77 μM and GI50 = 3.79 μM). The docking simulation was performed to analyze the probable binding models and the QSAR models were built for reasonable design of EGFR/HER-2 inhibitors at present and in future. The structural modification of introducing naphthalin moiety reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity. Moreover, the replacement of thiourea skeleton by using benzene ring resulted in the slight diversity of the two series towards specific targets.  相似文献   

6.
Herein, we report the synthesis and screening of cyano substituted biaryl analogs 5(am) as Peptide deformylase (PDF) enzyme inhibitors. The compounds 5a (IC50 value = 13.16 μM), 5d (IC50 value = 15.66 μM) and 5j (IC50 value = 19.16 μM) had shown good PDF inhibition activity. The compounds 5a (MIC range = 11.00–15.83 μg/mL), 5b (MIC range = 23.75–28.50 μg/mL) and 5j (MIC range = 7.66–16.91 μg/mL) had also shown potent antibacterial activity when compared with ciprofloxacin (MIC range = 25–50 μg/mL). Thus, the active derivatives were not only potent PDF inhibitors but also efficient antibacterial agents. In order to gain more insight on the binding mode of the compounds with PDF, the synthesized compounds 5(am) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. In silico ADME properties of synthesized compounds were also analyzed and showed potential to develop as good oral drug candidates.  相似文献   

7.
The optimization of our previous lead compound 1 (AChE IC50 = 3.31 μM) through synthesis and pharmacology of a series of novel carbamates is reported. The synthesized compounds were evaluated against mouse brain AChE enzyme using the colorimetric method described by Ellman et al. The three compounds 6a (IC50 = 2.57 μM), 6b (IC50 = 0.70 μM) and 6i (IC50 = 2.56 μM) exhibited potent in vitro AChE inhibitory activities comparable to the drug rivastigmine (IC50 = 1.11 μM). Among them, the compound 6b has been selected as possible optimized lead for further neuropharmacological studies. In addition, the AChE–carbamate Michaelis complexes of these potent compounds including rivastigmine and ganstigmine have been modeled using covalent docking protocol of GOLD and important direct/indirect interactions contributing to stabilization of the AChE–carbamate Michaelis complexes have been investigated.  相似文献   

8.
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30 μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50 = 1.01–18.4 μM) and diphenolase (IC50 = 5.22–84.1 μM) actions of tyrosinase. Compounds 16 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (13) were identified as dihydrochalcones which we named fleminchalcones (A–C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50 = 1.28 μM) and diphenolase (IC50 = 5.22 μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50 = 1.79 μM) and diphenolase (IC50 = 7.48 μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.  相似文献   

9.
A series of novel 4-substituted benzoxazolone derivatives was synthesized, characterized and evaluated as human soluble epoxide hydrolase (sEH) inhibitors and anti-inflammatory agents. Some compounds showed moderate sEH inhibitory activities in vitro, and two novel compounds, 3g and 4j, exhibited the highest activities with IC50 values of 1.72 and 1.07 μM, respectively. Structure–activity relationships (SARs) revealed that introduction of a lipophilic amino acid resulted in an obvious increase in the sEH inhibitory activity, especially for derivatives containing a phenyl (3d, IC50 = 2.67 μM), pyrrolidine (3g, IC50 = 1.72 μM), or sulfhydryl group (3e, IC50 = 3.02 μM). Several compounds (3a3g) were tested in vivo using a xylene-induced ear edema mouse model. Three compounds (3d, 3f, and 3g) showed strong anti-inflammatory activities in vivo which were higher than that of Chlorzoxazone, a reference drug widely used in the clinic. Our investigation provided a novel type of sEH inhibitor and anti-inflammatory agent that may lead to the discovery of a potential candidate for clinical use.  相似文献   

10.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

11.
Simple and efficient synthesis of quebecol and a number of its analogs was accomplished in five steps. The synthesized compounds were evaluated for antiproliferative activities against human cervix adenocarcinoma (HeLa), human ovarian carcinoma (SK-OV-3), human colon carcinoma (HT-29), and human breast adenocarcinoma (MCF-7) cancer cell lines. Among all the compounds, 7c, 7d, 7f, and 8f exhibited antiproliferative activities against four tested cell lines with inhibition over 80% at 75 μM after 72 h, whereas, compound 7b and 7g were more selective towards MCF-7 cell line. The IC50 values for compounds 7c, 7d, and 7f were 85.1 μM, 78.7 μM, and 80.6 μM against MCF-7 cell line, respectively, showing slightly higher antiproliferative activtiy than the synthesized and isolated quebecol with an IC50 value of 104.2 μM against MCF-7.  相似文献   

12.
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50 = 7.7 μM) and 2 (IC50 = 10.6 μM) as represented by hybrid compound 27 (IC50 = 6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the d-isomers 41 (IC50 = 19.3 μM) and 45 (IC50 = 5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.  相似文献   

13.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

14.
Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure–activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042 μM, 0.053 μM and 0.131 μM whereas 1b (Ki = 1.111 μM), 2b (Ki = 1.174 μM) and 4b (Ki = 1.562 μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were –NO2 functionalized however, –Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.  相似文献   

15.
A novel series of tacrine derivatives containing sulfonamide group were synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. The result showed that all the synthesized tacrine-sulfonamides (VIIIa–o) exhibited inhibitory activity on both cholinesterases. VIIIg showed the highest inhibitory activity on AChE IC50 = 0.009 μM. This value is 220-fold greater than that of galantamine (IC50 = 2.054 μM) and 6-fold greater than tacrine (IC50 = 0.055 μM). VIIIf displayed the strongest inhibition of BuChE (IC50 = 2.250 μM), which is close to donepezil (IC50 = 2.680 μM) and 8-fold greater than that of galantamine (IC50 = 18.130 μM) Furthermore, all of the synthesized tacrine derivatives showed higher inhibition of BuChE than that of galantamine. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were investigated for the antioxidant activity. Among them, VIIIb (IC50 = 94.390 ± 2.310 μM) showed significantly better ABTS cation radical scavenging ability than all of the new synthesized compounds.  相似文献   

16.
Two new oleanane-type triterpene saponins, identified as 16α-hydroxy-22-O-angeloyl-23-formyl-28,31-dihydroxymethylene-olean-12-ene-3β-O-{β-d-galactopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B1, 1) and 22-O-hydrocinnamoyl-23-formyl-28-dihydroxymethylene-olean-12-ene-3β-O-{β-d-glucopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B2, 2), were isolated from the seed cake of Camellia oleifera Abel. Their structures were established by extensive 1D- and 2D-NMR experiments along with TOF-MS analysis and acid hydrolysis. The cytotoxicity of the isolated compounds was evaluated in four human carcinoma cell lines: A 549, SK-OV-3, SK-MEL-2 and HCT15. Both compounds 1 and 2 exhibited significantly cytotoxic activity with IC50 values of 18.5 μM (A549), 11.3 μM (SK-OV-3), 13.9 μM (SK-MEL-2) and 1.6 μM (HCT15) for 1 and IC50 values of 8.4 μM (A549), 6.3 μM (SK-OV-3), 9.2 μM (SK-MEL-2) and 0.8 μM (HCT15) for 2. In addition, compound 2 showed more effective cytotoxic activity than compound 1.  相似文献   

17.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

18.
Four new daphnane-type diterpenes, genkwadanes A–D (14), together with 19 known ones, were isolated from ethanol extract of the flower buds of Daphne genkwa. Their structures were determined on the basis of extensive spectroscopic data. Among them, daphnane-type diterpene with a 1,10-double bond (1) was isolated from this plant for the first time. The cytotoxicity of all compounds 123 against the 10 selected human cancer cell lines was assayed. A number of compounds exhibited significant activities against the 10 cancer cell lines (IC50 < 9.56 μM). and most interestingly, all the compounds revealed preferred cytotoxicities on the HT-1080 cell line and displayed much stronger inhibitory activities (IC50 < 29.94 μM) compared with positive control 5-fluorouracil (IC50 = 35.62 μM), particularly, compounds 911, 13, 16 and 19 exhibited the strongest cytotoxicity activities against the HT-1080 cell line (IC50 < 0.1 μM).  相似文献   

19.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

20.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号