首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
New quinoline compounds comprising pyrazole scaffold through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory activity. Eight compounds (5c, 11b,c, 12c, 14a,b, 20a and 21a) were found to exhibit promising anti-inflammatory profiles in acute and sub-acute inflammatory models. They were screened for their ulcerogenic activity and none of them showed significant ulcerogenic activity comparable to the reference drug celecoxib and are well tolerated by experimental animals with high safety margin (ALD50 > 0.3 g/kg). Compounds 5c, 11b,c, 12c, 14a,b, 20a and 21a showed significant in vitro LOX inhibitory activity higher than that of zileuton. In vitro COX-1/COX-2 inhibition study revealed that compounds 12c, 14a,b and 20a showed higher selectivity towards COX-2 than COX-1. Among the tested compounds, 12c, 14a and 14b showed the highest inhibitory activity against COX-2 with an IC50 values of 0.1, 0.11 and 0.11 μM respectively. The docking experiments attempted to postulate the binding mode for the most active compounds in the binding site of COX-2 enzymes and confirmed the high selectivity binding towards COX-2 enzyme over COX-1.  相似文献   

2.
Two series of celecoxib analogues having 1,5-diaryl relationship were synthesized. The key strategy of the molecular design was oriented towards exploring bioisosteric modifications of the sulfonamide moiety of celecoxib. First series (2a2i) of celecoxib analogues bearing cyano functionality in place of sulfonamide moiety was synthesized by the reaction of appropriate trifluoromethyl-β-diketones (5a5i) with 4-hydrazinylbenzonitrile hydrochloride (4) in ethanol. Cyano moiety of pyrazoles 2 was then converted into corresponding carbothioamides 3 by bubbling H2S gas in the presence of triethylamine. All the synthesized compounds (2a2i and 3a3i) were screened for their in vivo anti-inflammatory (AI) activity using carrageenan-induced rat paw edema assay. COX-1 and COX-2 inhibitory potency was evaluated through in vitro cyclooxygenase (COX) assays. Compounds 2a, 2b, 2c, 2e and 3c showed promising AI activity at 3–4 h after the carrageenan injection that was comparable to that of the standard drug indomethacin. Although compounds 3d, 3e and 3f exhibited more pronounced COX-2 inhibition but they also inhibit COX-1 effectively thus being less selective against COX-2. Three compounds 2a, 2f and 3a were found to have a COX profile comparable to the reference drug indomethacin. However 2e, 3b, 3c and 3i compounds were the most potent selective COX-2 inhibitors of this study with 3b showing the best COX-2 profile. In order to better rationalize the action and the binding mode of these compounds, docking studies were carried out. These studies were in agreement with the biological data.  相似文献   

3.
Four pyrazolopyrimidine series were prepared with a substitution at position- 4 by Schiff base, triazole, oxadiazole and pyrazole moieties (7a-f, 8a,b, 9a-f, 10a,b and 13a,b), respectively. All the synthesized compounds were evaluated in vitro against COX-2 and in vivo against carrageenan-induced rat paw edema as anti-inflammatory agents. Regarding the anti-inflammatory activity (AI) compounds 7c, 7f, 8a, and 9a showed higher activity with respect to celecoxib. Compounds 9a, 7d, and 7f were closely selective to celecoxib. Also, 7c and 7d were safer than indomethacin and similar to celecoxib as resulted from the histopathological study. In addition, the docking study that showed the binding mode of prominent pyrazolopyrimidine compounds inside the COX-2 receptor. Formation of unexpected pyrazole 13a and 13b was briefly discussed using 2D NMR.  相似文献   

4.
A new series of fluoro substituted pyrazoline derivatives 5a–g and 6a–g were synthesized in good to excellent yield from the corresponding pyrazole chalcones, 4a–g, by using polyethylene glycol-400 (PEG-400) as an alternative reaction medium. The newly synthesized compounds were characterized and screened for their in vivo antiinflammatory and analgesic activity. Compounds 5g and 6g were found to be more potent than standard drug Diclofenac and six other compounds 5b, 5c, 5f, 6b, 6c and 6f showed significant antiinflammatory activity as compared to standard drug. Compounds 5c, 5d, 5e, 5f, 6c, 6d, 6e and 6f showed significant analgesic activity as compared to standard drug Aspirin.  相似文献   

5.
8-Acetyl-7-hydroxy-4-phenyl-2H-benzopyran-2-one as starting material a number of 8-substituted derivatives (i.e., hydrazones 2a,b, imine 2c, chalcones 3, pyrazoles 4, 3-cyano-2-oxo-dihydropyridines 5, and/or 3-cyano-2-imino-dihydropyridines 6) were synthesized and assayed for their anti-inflammatory, analgesic and antipyretic activities. Compounds 3c, 4b and 4i showed significant anti-inflammatory, analgesic and antipyretic activities. In addition, 1, 3b, 4d, 4e, 5b, 6a, 6c, 6d, 6e showed anti-inflammatory activity, 2b, 4h, 5e exhibit analgesic activity, and 2b, 4h, 5e showed antipyretic effect. In addition, molecular modeling and docking of the tested compounds into cyclooxygenase II complexed with its bound inhibitor indomethacin (4COX) using molsoft icm 3.4-8C program was performed in order to predict the affinity and orientation of the synthesized compounds at the active site. Also, it was found that the active compounds 1, 4i, 6ae interact with both Serine 530, and Tyrosine 385 amino acids which are the main amino acids involved in the mechanism of cyclooxygenase II inhibition.The synthesis of the pyrazole-containing new compounds 4 proved a successful hit; also, the 2-imino derivatives of 3-cyano-dihydropyridines were more successful than the 2-oxo derivatives.According to these results, we can conclude that compounds 1, 3c, 4b, 4i, and 6c appear to be the most interesting and seem potentially attractive as anti-inflammatory, analgesic, and antipyretic agents.  相似文献   

6.
As a part of a directed program for development of new active agents, novel heterocyclic derivatives with antipyrine and pyrazolone moieties -incorporated in- have been designed and synthesized. Starting with 4-arylidene-3-methyl-1-phenyl-5-pyrazolone derivative 2a,b novel Mannich bases derivatives have been synthesized and biologically evaluated for their anti-inflammatory activity. Furthermore, the activity of such compounds has been tested interestingly as COX-1 and COX-2 inhibitors. Structure elucidation of the synthesized compounds was attained by the use of elemental analysis, IR, 1H NMR, 13C NMR, and Mass spectrometry techniques. Compounds 3b, 3d and 4b represent the high % inhibition values for both COX-1 and COX-2. On the other hand, compound 8 showed little selectivity against COX-2 while compound 10 showed good selectivity against COX-1 only. Structure activity relationship has been discussed and the results were confirmed by molecular docking calculations.  相似文献   

7.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

8.
A series of novel naproxen analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4b-g) and their reaction intermediates aryl carboximidamides moiety (3b-g) was synthesized and evaluated in vitro as dual COXs/15-LOX inhibitors. Compounds 3b-g exhibited superior inhibitory activity than celecoxib as COX-2 inhibitors. Compounds 3b-d and 3g were the most potent COX-2 inhibitors with IC50 range of 6.4 – 8.13 nM and higher selectivity indexes (3b, SI = 26.19; 3c, SI = 13.73; 3d, SI = 29.27; 3g, SI = 18.00) comparing to celecoxib (IC50 = 42.60 nM, SI = 8.05). Regarding 15-LOX inhibitory activity, compounds belonging to aryl carboximidamide backbone 3b-e and 3g were the most potent with IC50 range of 1.77–4.91 nM comparing to meclofenamate sodium (IC50 = 5.64 µM). Data revealed that The levels of NO released by aryl carboximidamides 3b-g were more higher than 3-aryl-1,2,4-oxadiazole derivatives 4b-g, which correlated well with their COX-2 inhibitory activities.  相似文献   

9.
Phytochemical studies of the chloroform soluble fraction of Dioscorea opposita resulted in the isolation of four new compounds, 3,5-dihydroxy-4-methoxybibenzyl (1), 3,3′,5-trihydroxy-2′-methoxybibenzyl (2), 10,11-dihydro-dibenz[b,f]oxepin-2,4-diol (3), and 10,11-dihydro-4-methoxy-dibenz[b,f]oxepin-2-ol (4), together with an additional fifteen known compounds. The structures of 1–4 were elucidated by spectroscopic methods including 2D NMR. All of the nineteen isolated compounds were tested in the DPPH, superoxide anion radical scavenging assays and cyclooxygenases (COXs) inhibition assay. Of those, compounds 7, 9, 11, 12, 13, 15 and 18 exhibited radical scavenging activities and compounds 2, 3, 8, 13, 15 and 16 showed selective inhibitory activities against COX-2.  相似文献   

10.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

11.
This article reports for the first time the synthesis of some novel β-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a–c, 9a–c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-β-lactams 8a–l, 10a–f and 12a–c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and β-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.  相似文献   

12.
The present study aims at the synthesis of pyrazolines bearing benzothiazole and their evaluation as anti-inflammatory agents. The synthesized compounds were evaluated for their anti-inflammatory potential using carrageenan induced paw edema model. Two compounds 5a and 5d alleviated inflammation more than the standard drug celecoxib. Eight compounds 5b, 5c, 5e, 5g, 5h, 6b, 6e and 6f showed anti-inflammatory activity comparable to celecoxib. To understand the mode of action, COX-2 enzyme assay and TNF-α assay were carried out. All the active compounds were assessed for their cytotoxicity. The ulcerogenic risk evaluation was performed on the active compounds that were not found to be cytotoxic. Out of ten active compounds, two compounds (5d and 6f) were finally found to be the most potent anti-inflammatory agents attributing to the suppression of the COX-2 enzyme activity and TNF-α production without being either cytotoxic or ulcerogenic.  相似文献   

13.
Some thiazolyl hydrazones were synthesized by one pot reaction of thiophene-2-carbaldehyde or 2, 4-dichlorobenzaldehyde, thiosemicarbazide and various phenacyl bromides which were preliminarily screened for in vitro antioxidant and antifungal activities. Excellent DPPH and H2O2 radical scavenged antioxidant activities were observed with almost all the tested compounds. Compounds 4a, 4b, 4c, 4e, 4f and 4i showed comparable DPPH scavenged antioxidant potential (90.26–96.56%) whereas H2O2 scavenged antioxidant activity (90.98–92.08%) was noticeable in case of 4a and 4f; showing significant antioxidant potential comparable with the standard ascorbic acid (95.3%). In vitro antifungal activity of synthesized compounds against fungal species Candida albicance, Aspergillus niger and Aspergillus flavus was found to be moderate to good as compared with the standard fluconazole and MIC values were found in the range of 3.12–25 μg/mL. Molecular docking studies revealed that the compounds 4a, 4b and 4c have a potential to become lead molecules in drug discovery process. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized antioxidants which expressed good oral drug like behaviour and non-toxic nature.  相似文献   

14.
15.
A series of benzo[d]thiazole analogs were synthesized and evaluated for their anti-inflammatory and analgesic effects. Using an ear edema model, except for compounds 2k, 2m-2q and 3a, other compounds showed the anti-inflammatory effects. Among them, compounds 2c, 2d, and 2g showed the best anti-inflammatory activity (inhibition rate: 86.8%, 90.7% and 82.9%, respectively). By the acetic acid-induced abdominal writhing test, except for compounds 2e, 2l, 2m, 2o, 2p and 3a, other compounds showed the analgesic effects with inhibition rate values of 51.9–100% (2a-2r) and 68.6–100% (3a-3g). Next, compounds 2c, 2d, 2g, 3d, 3f, 3g that displayed the excellent anti-inflammatory and analgesic activities were evaluated for their inhibitory effect against ovine COX-1 and COX-2. Compounds 2c, 2d, 2g, 3d, 3f, 3g were weak inhibitors of the COX-1 isozyme but exhibited the moderate COX-2 isozyme inhibitory effects IC50 from 0.28 to 0.77 μM and COX-2 selectivity indexes (SI: 18.6 to 7.2). This benzo[d]thiazole moiety will be proved to be of great significance for developing more potent COX-2 inhibitors.  相似文献   

16.
Four novel scaffolds consisting of total 24 compounds (1a1o, 2a2c, 3a3c and 4a4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII.  相似文献   

17.
Nowadays, diabetes and its associated inflammatory complications are important public health problems worldwide. Market limitations of drugs with dual actions as anti-inflammatory (AI) and anti-diabetic have been led to a temptation for focusing on the discovery and development of new compounds with potential AI and anti-diabetic activities. Herein, we synthesized two new series containing pyrazole ring with vicinal diaryl rings as selective COX-2 moiety and thiazolidindione (series 12a-f) or thiazolidinone (series 13a-f) as anti-diabetic moiety and the two moieties were linked together with methylene or methylenehydrazone functionality. The two series were evaluated for their COX inhibition, AI activity and ulcerogenic liability and for the anti-diabetic activity; 12a-f and 13a-f were assessed in vitro against α-glucosidase, β- glucosidase, in vivo hypoglycemic activity (one day and 15 days studies) in addition to PPARγ activation study. Four compounds (12c, 12f, 13b and 13f) had higher COX-2 S.I. (8.69–9.26) than the COX-2 selective drug celecoxib (COX-2 S.I. = 8.60) and showed the highest AI activities and the lowest ulcerogenicity than other derivatives. Also, two thiazolidindione derivatives 12e and 12f and two thiazolidinone derivatives 13b and 13c showed higher inhibitory activities against α- and β-glucosidase (% inhibitory activity = 62.15, 55.30, 65.37, 59.08 for α-glucosidase and 57.42, 60.07, 58.19, 66.90 for β-glucosidase respectively) than reference compounds (acarbose with % inhibitory activity = 49.50 for α-glucosidase and d-saccharic acid 1,4-lactone monohydrate with % inhibitory activity = 53.42 for β-glucosidase) and also showed good PPAR-γ activation and good hypoglycemic effect in comparison to pioglitazone and rosiglitazone. Moreover, Shape comparison and docking studies were carried out to understand their interaction and similarity with standard drugs.  相似文献   

18.
A combinatorial library of β-chlorovinyl chalcones (4) were synthesized by Claisen–Schmidt condensation reaction. Catalytic reaction of substituted 3-chloro-3-phenyl-propenal (2) and 1-(2,4-dimethoxy-phenyl)-ethanone or 1-(4-methoxy-phenyl)-ethanone (3) in alkaline conditions furnished the target compound 5-chloro-1-(2,4-dimethoxy-phenyl)-5-phenyl-penta-2,4-dien-1-one (4). The synthesized compounds were screened for their biological activity viz. anticancer, anti-inflammatory and antimicrobial activities. Synthesized compounds 4g and 4h revealed promising anti-inflammatory activity (66–67% TNF-α and 95–97% IL-6 inhibitory activity at 10 μM). Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Furthermore, the anticancer activity (30–40%) was shown by compounds 4d, 4e, 4h and 4b at 10 μM concentrations against ACHN followed by Calu 1, Panc1, HCT116 and H460 cell lines. Some of the compounds 4d, 4e, 4a, 4i and 4b revealed promising antimicrobial activity at MIC 50–100 μg/mL against selected pathogenic bacteria and fungi.  相似文献   

19.
A series of indolyl chalcones were synthesized and evaluated in vitro for their anticancer activity against three human cancer cell lines. Compounds 3bd, 3h, 3j, 3l, 3m, 4g, and 4j showed significant cytotoxicity, particularly, indolyl chalcones 3l and 3m were identified as the most potent and selective anticancer agents with IC50 values 0.03 and 0.09 μM, against PaCa-2 cell line, respectively.  相似文献   

20.
Rapid and efficient synthesis of a phenyl-1H-1,2,3-triazole library enabled cost-effective biological testing of a range of novel non-steroidal anti-inflammatory drugs with potential for improved drug efficacy and toxicity profiles. Anti-inflammatory activities of the phenyl-1H-1,2,3-triazole analogs synthesized in this report were assessed using the xylene-induced ear edema model in mice. At least four analogs, 2a, 2b, 2c, and 4a, showed more potent effects than the reference anti-inflammatory drug diclofenac at the same dose of 25 mg/kg. To explore relationships between the structural properties of phenyl-1H-1,2,3-triazole analogs and their anti-inflammatory activities in xylene-induced ear edema, comparative molecular field analysis was performed, and pharmacophores showing good anti-inflammatory activities were identified based on an analysis of contour maps obtained from comparative molecular field analysis. The anti-inflammatory effect on the molecular level was tested by the expression of tumor necrosis factor-alpha induced COX-2 using Western blots. Because the addition of the analog 2c caused the expression change of TNF-α induced COX-2, the molecular binding mode between 2c and COX-2 was elucidated using in silico docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号