首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2010,45(6):1011-1016
An aminopeptidase with broad substrate specificity was purified to homogeneity (123.7-fold) with a yield of 3.43% from chicken (Gallus gallus) intestine using a combination of chromatographic separation strategies. The enzyme was identified as alanyl aminopeptidase or aminopeptidase N (APN) by Peptide Mass Fingerprinting. The molecular weight of the enzyme was estimated to be ∼180 kDa by SDS-PAGE and gel filtration chromatography. The enzyme was found to be a glycoprotein, having 40% sugar residue and a molecular mass of 108 kDa after deglycosylation. The enzymatic activity was optimal at 60 °C and pH 6.0. The enzyme preferentially hydrolyzed Leu-β-NA (Km = 0.1 mM) followed by Ala, Phe, Tyr and Gly at N-terminal. The enzyme activity was completely inhibited by 1,10 phenanthroline (1 mM) and bestatin (1 mM) confirming it as a metalloprotease. Potential of this enzyme in combination with other endoproteases for the production of debittered protein hydrolysates has been discussed.  相似文献   

2.
Herein we report a series of novel chloramphenicol amine derivatives as aminopeptidase N (APN)/CD13 inhibitors. All compounds were synthesized starting from commercially available (1S,2S)-2-amino-1-(4-nitrophenyl) propane-1,3-diol. The preliminary biological screening showed that some compounds exhibited potent inhibitory activity against APN. It should be noted that one compound, 13b (IC50 = 7.1 μM), possess similar APN inhibitory activity compared with Bestatin (IC50 = 3.0 μM).  相似文献   

3.
Aminopeptidase N (APN/CD13) over expressed on tumor cells, plays a critical role in tumor invasion, metastasis, and tumor angiogenesis. Here we described the design, synthesis and preliminary activity studies of novel leucine ureido derivatives as aminopeptidase N (APN/CD13) inhibitors. The results showed that compound 8c had the most potent inhibitory activity against APN with the IC50 value to 0.06 ± 0.041 μM, which could be used for further anticancer agent research.  相似文献   

4.
A novel neutral aminopeptidase (NAP-2) was found exclusively in the rat central nervous system (CNS). It was separated from the ubiquitous puromycin-sensitive aminopeptidase (PSA) and the neuron-specific aminopeptidase (NAP) by an automated FPLC-aminopeptidase analyzer. The activity of the neuronal aminopeptidase enriched in the synaptosomes is different from NAP and PSA in distribution and during brain development. The enzyme was purified 2230-fold to apparent homogeneity from rat brain cytosol with 4% recovery by ammonium sulfate fractionation, followed by column chromatography successively on Phenyl-Sepharose, Q-Sepharose, Sephadex G-200, and Mono Q. The single-chain enzyme with a molecular mass of 110 kDa has an optimal pH of 7.0 and a pI of 5.6. It splits β-naphthylamides of amino acid with aliphatic, polar uncharged, positively charged, and aromatic side chain. Leucyl β-naphthylamide (Leu βNA) is the best substrate with the highest hydrolytic coefficiency followed by Met βNA = Arg βNA = Lys βNA > Ala βNA > Tyr βNA > Phe βNA. The cysteine-, metallo-, glyco-aminopeptidase releases the N-terminal Tyr from Leu-enkephalin with a Km 82 μM and a kcat of 1.08 s−1, and Met-enkephalin with a Km of 106 μM and a kcat of 2.6 s−1. The puromycin-sensitive enzyme is most susceptible to amastatin with an IC50 of 0.05 μM. The data indicate that the enzyme is a new type of NAP found in rodent. Its possible function in neuron growth, neurodegeneration, and carcinomas is discussed.  相似文献   

5.
A series of novel derivatives of N-cinnamoyl-l-aspartic acid were designed, synthesized, and assayed for their inhibitory activities against aminopeptidase N. The preliminary biological assay showed that compound 8c has the most potent inhibitory activity against APN with an IC50 of 11.1 ± 0.9 μM, this could be used as the lead compound in future research on anticancer agents.  相似文献   

6.
《Inorganica chimica acta》2006,359(5):1351-1356
Energy-transfer rate-constants from photo-excited [Ru(N–N)3]2+ (N–N = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (4dmb), 5,5′-dimethyl-2,2′-bipyridine (5dmb)) to [Cr(O–O)3]3− (O–O2− = ox2− ((COO)2), mal2− (CH2(COO)2)) and [Cr(CN)6]3− in encounter complexes were evaluated in aqueous solutions containing alkali metal ion. The rate constant depends on the molecular size of the ruthenium(II) complex: 1.8 × 108 s−1 for [Ru(bpy)3]2+ (molecular radius, r = 5.8 Å), 1.4 × 108 s−1 for [Ru(5dmb)3]2+ (r = 6.1 Å) and 0.96 × 108 s−1 for [Ru(4dmb)3]2+ (r = 6.7 Å) in the system of [Ru(N–N)3]2+–[Cr(ox)3]3− in aqueous solution. However, the rate constant is much more sensitive to the chromate(III) complex than to ruthenium(II) complex; 1.8 × 108 s−1 and 0.43 × 108 s−1 for [Cr(ox)3]3− (r = 4.0 Å) and [Cr(mal)3]3− (r = 4.2 Å) in the [Ru(bpy)3]2+–[Cr(O–O)3]3− systems, respectively. We conclude that the congeniality between the donor’s and acceptor’s ligands in encounter complex plays an important role in energy transfer in aqueous solution.  相似文献   

7.
A combined ammonia gas absorption and nitrification was conducted in a single bioscrubber. The reactor was consisted of a bubble column (gas absorption) and a packed bed (nitrification) which contained poly-urethane foams with immobilized nitrifying activated sludge. The entering gas and scrubbing liquid were contacted countercurrently. The bubble column elimination capacity (EC) was 26.74 g NH3/m3 h at >99% ammonia gas removal and effluent gas concentration lower than 2 ppmv. Without ammonium supplement, EC can reach 35.66 g NH3/m3 h which is equivalently the highest tolerable ammonia loading rate of 700 g N/m3 day (1650 mg N/L) at the packed bed. At this level, 593 g N/m3-day ammonia removal rate was achieved via nitrification, dominated by ammonia oxidation. Partial recycling (R/Q = 0.5) of scrubbing solution reduced the secondary wastewater volume by producing 233% more concentrated nitrified products. Hydraulic retention time (HRT) of 24 h was found optimal for both processes (gas absorption and nitrification).  相似文献   

8.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

9.
RNA viruses are a major source of respiratory diseases worldwide. The lack of effective therapeutical treatment underlines the importance of research for new antiviral compounds. Raoulic acid is a principal ingredient of the plant Raoulia australis Hook. F. Antiviral assay using cytopathic effect (CPE) reduction method showed that raoulic acid possessed strong antiviral activity against human rhinovirus 2 (HRV2) with a 50% inhibition concentration (IC50) value of less than 0.1 μg/ml, human rhinovirus 3 (HRV3) with a IC50 value of 0.19 μg/ml, coxsackie B3 (CB3) virus with IC50 values of 0.33 μg/ml, coxsackie B4 (CB4) virus with IC50 values of 0.40 μg/ml, and enterovirus 71 (EV71) virus with IC50 values of less than 0.1 μg/ml. However, the compound did not possess antiviral activity against influenza A (Flu A/PR, Flu A/WS, H1N1) and B viruses at four concentrations ranging from 0.1 to 100 μg/ml.  相似文献   

10.
《Process Biochemistry》2010,45(5):757-764
Aminopeptidase from a solvent tolerant strain Pseudomonas aeruginosa PseA was purified and studied for its biochemical and molecular characteristics. Ion-exchange chromatography resulted in 11.9-fold purification and 38% recovery of the 56 kDa enzyme. The enzyme was found to be stable over a pH range of 6.0–8.0 and appreciably thermostable up to 70 °C. PseA aminopeptidase exhibited Km of 3.02 mM and Vmax of 6.71 μmol/mg/min towards l-Leu-p-nitroanilide. Remarkable stability in both hydrophilic and hydrophobic solvents makes PseA aminopeptidase unique. Partial N-terminal sequence of enzyme showed exact match with probable aminopeptidase of P. aeruginosa PAO1, coded by gene pepB. Polymerase chain reaction amplified the 1611-bp open reading frame encoding a 57.51 kDa, 536 amino acid PseA PepB polypeptide. The deduced PseA PepB protein sequence contained a 24-residue signal peptide (2.57 kDa) followed by a 1.28 kDa propeptide and a mature product of 500 residues. Search for conserved domain in PseA aminopeptidase explored its place in zinc-metallopeptidase family. Primary sequence analysis showed the hydrophobic inclination of the protein; and the 3D structure modeling elucidated the presence of a high content of hydrophobic residues on its surface probably imparting solvent stability to it. The enzyme might find potential applications in non-aqueous enzymology due to its marked thermostability and striking solvent stability.  相似文献   

11.
《Inorganica chimica acta》2006,359(5):1666-1672
Two novel ligands containing a functionalized N  N chelating moiety (pbpy-OBut and tpy-COOH, respectively) were treated with [Ir(ppy)2(μ-Cl)]2 (ppy = 2-(2-pyridyl)phenyl), leading to the cationic cyclometalated complexes [Ir(ppy)2(pbpy-OBut)]+ (2) (pbpy-OBut = 4-{4′-(4-phenyloxy)-6′-phenyl-2,2′-bipyridyl}butene) and [Ir(ppy)2(tpy-COOH)]+ (3) (tpy-COOH = 4′-(4-carboxyphenyl)-2,2′:6′,2″-terpyridine). Complexes 2 and 3 exhibit intense room temperature luminescence both in solution and as solid films. Assignment of the emissive behavior to a 3LLCT (ppy-to-N  N) excited state is proposed.  相似文献   

12.
Three new compounds formulated (ClO4)2[Fe(pq)3] (1), (BF4)2[Fe(pq)3] · EtOH (2) and {(ClO4)[MnCr(C2O4)3][Fe(pq)2(H2O)2]} (3), where pq is 2,2′-pyridylquinoline, have been synthesised and characterised. Despite the different crystal packing exhibited by 1 and 2, the cationic species [Fe(pq)3]2+ are structurally quite similar. At 293 K, the Fe–N bond lengths are characteristic of the iron(II) in the high-spin state. In contrast to 1, 2 undergoes a continuous spin transition. Indeed, at 95 K its structure experiences a noticeable change in the Fe–N bonds and angles, i.e. the Fe–N bonds shorten by 0.194 Å on the average. The magnetic behaviour confirms that 1 is fully high-spin in the 4–300 K temperature range while 2 shows a spin transition centred at T1/2 = 150 K. The corresponding enthalpy, entropy and interaction parameter are ΔH = 7.49 kJ mol?1, ΔS = 50 J K?1 mol?1and Γ = 1.35 kJ mol?1. Compound 3 has been obtained as a microcrystalline powder. The magnetic properties of 3 point at the occurrence of ferromagnetic coupling below 100 K and the onset of a ferromagnetic ordering below 10 K (Weiss constant equal to 6.8 K). The Mössbauer spectra of 3 show the occurrence of a magnetic order at T ? 4.2 K.  相似文献   

13.
Three new sesterterpenoids, phorbaketals L–N (13), were isolated from a marine sponge of the genus Phorbas and their complete structures were elucidated via analysis of HRFABMS and NMR spectroscopic data. Phorbaketal N (3) showed potent cytotoxicity against human pancreas cancer cells (IC50 = 11.4 μM).  相似文献   

14.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

15.
The biogeochemical cycles of nitrogen (N) and base cations (BCs), (i.e., K+, Na+, Ca2+, and Mg2+), play critical roles in plant nutrition and ecosystem function. Empirical correlations between large experimental N fertilizer additions to forest ecosystems and increased BCs loss in stream water are well demonstrated, but the mechanisms driving this coupling remain poorly understood. We hypothesized that protons generated through N transformation (PPRN)—quantified as the balance of NH4+ (H+ source) and NO3 (H+ sink) in precipitation versus the stream output will impact BCs loss in acid-sensitive ecosystems. To test this hypothesis, we monitored precipitation input and stream export of inorganic N and BCs for three years in an acid-sensitive forested watershed in a granite area of subtropical China. We found the precipitation input of inorganic N (17.71 kg N ha−1 year−1 with 54% as NH4+–N) was considerably higher than stream exported inorganic N (5.99 kg N ha−1 year−1 with 83% as NO3–N), making the watershed a net N sink. The stream export of BCs (151, 1518, 851, and 252 mol ha−1 year−1 for K+, Na+, Ca2+, and Mg2+, respectively) was positively correlated (r = 0.80, 0.90, 0.84, and 0.84 for K+, Na+, Ca2+, and Mg2+ on a monthly scale, respectively, P < 0.001, n = 36) with PPRN (389 mol ha−1 year−1) over the three years, suggesting that PPRN drives loss of BCs in the acid-sensitive ecosystem. A global meta-analysis of 15 watershed studies from non-calcareous ecosystems further supports this hypothesis by showing a similarly strong correlation between ∑BCs output and PPRN (r = 0.89, P < 0.001, n = 15), in spite of the pronounced differences in environmental settings. Collectively, our results suggest that N transformations rather than anions (NO3 and/or SO42−) leaching specifically, are an important mediator of BCs loss in acid-senstive ecosystems. Our study provides the first definitive evidence that the chronic N deposition and subsequent transformation within the watershed drive stream export of BCs through proton production in acid-sensitive ecosystems, irrespective of their current relatively high N retention. Our findings suggest the N-transformation-based proton production can be used as an indicator of watershed outflow quality in the acid-sensitive ecosystems.  相似文献   

16.
A complete randomised block design experiment was conducted to investigate the effects of benzoic acid inclusion level on nitrogen (N) metabolism, and manure ammonia (NH3) and odour emissions in finishing pigs. Sixteen boars (64 kg live weight ± 1.5 kg) were assigned to one of four dietary treatments (T) varying in benzoic acid concentration: (T1) 0 g benzoic acid/kg (as fed); (T2) 10 g benzoic acid/kg; (T3) 20 g benzoic acid/kg; (T4) 30 g benzoic acid/kg. Animals were housed in individual metabolism crates and feed was provided ad libitum. All diets were formulated to have similar concentration of digestible energy and ileal digestible lysine with benzoic acid replacing wheat in the diet. There was a linear decrease in NH3 emission (P<0.001), as the dietary benzoic acid concentration increased (141.4 mg/g versus 40.5 mg/g N intake (S.E.M. 12.1) over the 240-h storage period). However, there was no effect (P>0.05) of benzoic acid on odour concentration. Urinary nitrogen (N) excretion, total N excretion and the urinary:faecal N ratio were linearly reduced (P<0.05) with increasing benzoic acid inclusion. Furthermore, N retention increased linearly (P<0.05) as benzoic acid concentration increased from 0 g/kg to 30 g/kg in the diet. In conclusion, the inclusion of benzoic acid in the diet of finishing pigs has the potential to reduce total and urinary N excretion and the urinary to faecal N ratio. This was mirrored by reductions in manure NH3 emissions in the benzoic acid supplemented treatments.  相似文献   

17.
Perfluoroalkylated substances (PFASs) including perfluorooctane acid (PFOA) and perfluorooctane sulfonate (PFOS) have been classified as persistent organic pollutants and are known to cause reduced testosterone production in human males. The objective of the present study was to compare the potencies of five different PFASs including PFOA, PFOS, potassium perfluorooctane sulfonate (PFOSK), potassium perfluorohexane sulfonate (PFHxSK) and potassium perfluorobutane sulfonate (PFBSK) in the inhibition of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) activities in the human and rat testes. Human and rat microsomal enzymes were exposed to various PFASs. PFOS and PFOSK inhibited rat 3β-HSD activity with IC50 of 1.35 ± 0.05 and 1.77 ± 0.04 μM, respectively, whereas PFHxSK and PFBSK had no effect at concentrations up to 250 μM. All chemicals tested weakly inhibited human 3β-HSD activity with IC50s over 250 μM. On the other hand, PFOS, PFOSK and PFOA inhibited human 17β-HSD3 activity with IC50s of 6.02 ± 1.02, 4.39 ± 0.46 and 127.60 ± 28.52 μM, respectively. The potencies for inhibition of 17β-HSD3 activity were determined to be PFOSK > PFOS > PFOA > PFHxSK = PFBSK for human 17β-HSD3 activity. There appears to be a species-dependent sensitivity to PFAS-mediated inhibition of enzyme activity because the IC50s of PFOS(K) for inhibition of rat 17β-HSD3 activity was greater than 250 μM. In conclusion, the present study shows that PFOS and PFOSK are potent inhibitors of rat 3β-HSD and human 17β-HSD3 activity, and implies that inhibition of steroidogenic enzyme activity may be a contributing factor to the effects that PFASs exert on androgen secretion in the testis.  相似文献   

18.
Novel trinuclear Ni(II) complex [Ni3(pmdien)3(btc)(H2O)3](ClO4)3 · 4H2O, 1 where pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, H3btc = 1,3,5-benzenetricarboxylic (trimesic) acid, has been prepared and structurally characterized. Three nickel atoms are bridged by btc trianion and their coordination sphere is completed by three N atoms of pmdien and O atom of the water molecule. The three nickel(II) magnetic centers are equivalent and their coordination spheres are completed to deformed octahedrons. Magnetic susceptibility was measured over the temperature range 1.8–300 K and zJ = ?0.19 cm?1, D = 3.79 cm?1, g = 2.18 parameters were calculated.  相似文献   

19.
Sediment may play an important role during the submerged macrophyte decline in the eutrophication progress. In order to investigate the response in root morphology and nutrient contents of submerged macrophytes Myriophyllum spicatum to sediment, five sediment types were treated and used (five types of sediment were used in the experiment: treatment 1 was nature sediment + sand, a 50:50 (v/v) mixture, treatment 2 was the studied sediment only, treatment 3 was sediment + nitrogen (N, NH4Cl 400 mg kg?1), treatment 4 was sediment + phosphorus (P, NaH2PO4 300 mg kg?1); treatment 5 was sediment + phosphorus (P, NaH2PO4 600 mg kg?1)). The results show that the root N content was only significantly affected by adding N in sediments and P was elevated by adding N and P. The root mass and its percentage increased at first, the peak values were reached at 35 d, and then decreased. The root growth was restrained by adding sand and N in sediments, root senescence process was delayed at the later experimental time by adding P in sediments. The increase of root volume showed a similar trend to that of root growth, except for plant with P addition where root volume remained high after 35 d. The root volume decreased while the main root number increased significantly by adding sand in sediments. The mean root length and main root diameter were reduced by adding P in sediments. The compatible sediment nutrient condition is necessary to restore submerged macrophytes in a degraded shallow lake ecosystem, and the effect of sediment on the root morphology and nutrient content is one of the important aspects restricting the restoration of submerged macrophytes.  相似文献   

20.
Hungate's method is a well-accepted protocol for the isolation or incubation of anaerobes with a roll tube technique. The aim of this study was to stimulate fungal enzyme production by optimizing the components of Hungate's medium for the growth of a rumen fungus Anaeromyces sp. YQ3. The organism was grown on corn stalks and incubated for 10 days in defined media with two glucose levels (G+, glucose in the Hungate's medium as a glucose control; G?, glucose removed in a modified Hungate's medium) and four N sources (N1: yeast extract + tryptone + (NH4)2SO4 in Hungate's medium (control); N2: yeast extract + (NH4)2SO4; N3: tryptone + (NH4)2SO4; and N4: tryptone + yeast extract). In the G? media, the recovered activities of feruloyl esterase (FAE) (P<0.0001), acetyl esterase (AE) (P=0.0065) and xylanase (P<0.0001) were decreased, while the G+ media with N1 nitrogen stimulated the production of FAE and xylanase (P<0.0001). The G? medium with N2 nitrogen increased the recovered activities of carboxymethyl cellulase (P=0.0001) and avicelase (P<0.0001), while the N3 and N4 media increased the recovered activity of AE (P=0.0015). The N4 medium was comparable to the N1 medium in stimulating the amount of recovered xylanase activity. The activities of FAE (P<0.0001), AE (P<0.0001), and xylanase (P<0.0001) showed a time-dependent increase and reached their peaks at day 10, while the avicelase activity peaked at day 8 (P=0.0071). The esterase activities (FAE and AE) were positively correlated with the enzyme activities of xylanase and carboxymethyl cellulase (r > 0.48, P<0.05). After a 10-day incubation, the glucose in the Hungate's media contributed to an increase in organic matter disappearance (P<0.0001) and volatile fatty acid (VFA) concentration (P<0.0001), except for molar acetate proportions. The N4 treatment increased organic matter disappearance and total VFA concentration (P=0.0002). The change in N source did not alter molar proportions of acetate, propionate and valerate, while the N2 treatment increased molar butyrate proportion (P<0.0035), and both N2 and N3 increased the molar proportion of branched chain VFAs (P<0.0041). In summary, the glucose in the Hungate's medium is beneficial for stimulating the production of esterases and xylanase, thereby promoting fungal growth. Amending the N source in Hungate's medium brings about different yields of rumen fungal esterases and polysaccharide hydrolases that have important nutritional impacts on fibre degradation in ruminant animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号