首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

2.
The precursors bis[N-(alkyl)benzimidazoliumylmethyl]durene halide (1a: alkyl = C2H5, halide = Br?; 1b: alkyl = n-C4H9, halide = Cl?; durene = 1,2,4,5-tetramethylbenzene) and their two new NHC silver(I) complexes [Durene(CH2BimyEtAgBr)2] (2a) and [Durene(CH2BimynBuAgCl)2] (2b) (Bimy = benzimidazol-2-ylidene) have been prepared and characterized. In the crystal structures of 2a and 2b the aromatic π–π stacking interactions are observed.  相似文献   

3.
《Inorganica chimica acta》2006,359(5):1421-1426
Synthesis, structural characterization, and spectroscopic and magnetic properties of three new cyano-bridged 3d–4f bimetallic complexes, LnIII(DMF)4(H2O)3CrIII (CN)6 · nH2O (Ln = Nd, Sm, Gd), have been described. The Nd–Cr complex crystallizes in the monoclinic P21/n space group with the following unit cell parameters: a = 20.063(7) Å, b = 8.967(4) Å, c = 18.023(6) Å, b = 96.12(3)°, V = 3224(2) Å3, and Z = 4. The neodymium (III) ion, which adopts anti-prism eight-coordination environment, is linked to the [CrIII(CN)6]3− moiety through a bridging cyanide ligand with Nd–N = 2.550(4) Å and Nd–N–C = 164.4(4)°. The variable-temperature (0.5 T at 2–300 K) and variable-field (0–5 T at 2 and 5 K) magnetic measurements reveal that the weak interaction of Gd–Cr complexes differs from that of Nd–Cr and Sm–Cr ones mainly because of the lack of orbital angular momentum. The XPS and diffuse reflectance electronic spectra were also measured to discuss charge transfer transitions concerning π-backdonation from the viewpoint of magneto-optical functions.  相似文献   

4.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

5.
The bimetallic [M1M2(tren)2(CAn?)]m+ series, where M = GaIII or CrIII and CA is the chloranilate ligand which can take on diamagnetic (CAcat,cat)4? or paramagnetic (CAsq,cat)3? forms, comprises an electronically diverse series of compounds ranging from the closed-shell [Ga2(tren)2(CAcat,cat)]2+ to the S = 5/2 ground state of [Cr2(tren)2(CAsq,cat)]3+. This report deals with the interpretation of the EPR and ENDOR spectra of [Ga2(tren)2(CAsq,cat)](BPh4)2(BF4) (2) and the related derivative [Ga2(tren)2(DHBQ)](BPh4)2(BF4) (2a) (where DHBQ is the fully deprotonated trianionic form of 2,5-dihydroxy-1,4-benzoquinone) in an effort to further characterize the electronic structure of this radical species. The X-band (~9.5 GHz) EPR spectrum of complex 2 acquired in a butyronitrile/propionitrile glass at 4 K reveals a rhombic g-tensor with gxx = 2.0100, gyy = 2.0097, and gzz = 2.0060 with hyperfine interactions due to spin delocalization onto the two Ga nuclei (axx = 4.902 G, ayy = 4.124 G, azz = 3.167 G); the origin of the hyperfine coupling was confirmed by analysis of the room temperature spectra of complexes 2 and 2a. The low-temperature spectrum of complex 2 also indicates the presence of a triplet electronic state characterized by a g-value of 2.009 and axial zero-field splitting of D = 150 G (0.012 cm?1) as determined from measurements carried out at both X- and W-band (~95 GHz) frequencies. This triplet state is believed to arise due to a weak intermolecular Heisenberg exchange interaction between two aggregating complexes. ENDOR measurements on complex 2a at 20 K allowed for a determination of the magnitude of hyperfine coupling to the protons associated with the radical bridge as well as providing a rare example of an ENDOR signal arising from coupling to a gallium nucleus. Finally, these results were combined with literature data on the free semiquinone form of the bridging ligand in order to assess the extent to which density functional theory can predict unpaired spin density distribution in a complex molecule of this type. Although differences between theory and experiment were noted, DFT was able to provide a reasonably accurate picture of the electronic structure of this system as well as provide insight into the spin polarization mechanism(s) responsible for the observed hyperfine interactions.  相似文献   

6.
Activated organophosphate (OP) insecticides and chemical agents inhibit acetylcholinesterase (AChE) to form OP-AChE adducts. Whereas the structure of the OP correlates with the rate of inhibition, the structure of the OP-AChE adduct influences the rate at which post-inhibitory reactivation or aging phenomena occurs. In this report, we prepared a panel of β-substituted ethoxy and γ-substituted propoxy phosphonoesters of the type p-NO2PhO-P(X)(R)[(O(CH2)nZ] (R = Me, Et; X = O, S; n = 2, 3; Z = halogen, OTs) and examined the inhibition of three AChEs by select structures in the panel. The β-fluoroethoxy methylphosphonate analog (R = Me, Z = F, n = 2) was the most potent anti-AChE compound comparable (ki ~6 × 106 M?1 min?1) to paraoxon against EEAChE. Analogs with Z = Br, I, or OTs were weak inhibitors of the AChEs, and methyl phosphonates (R = Me) were more potent than the corresponding ethyl phosphonates (R = Et). As expected, analogs with a thionate linkage (PS) were poor inhibitors of the AChEs.  相似文献   

7.
We review an extensive body of single-crystal high-frequency electron paramagnetic resonance (HFEPR) data in order to determine the transverse spin Hamiltonian parameters that control the tunneling of the direction of magnetization in a variety of integer and half-integer-spin single-molecule magnets (SMMs). The SMMs studied are members of the following families: S = 9/2 [Mn4O3Cl]6+; S = 5 [Mn3NiO4]6+; S = 6 [Mn3ZnO4]6+; and S = 4 [Ni4(OR)4]4+. HFEPR spectra for the half-integer S = 9/2 Mn4 complexes that have C3 symmetry do not provide measurable evidence for transverse spin Hamiltonian terms. This finding is consistent with the relatively large coercive field seen in the magnetization hysteresis loops for these complexes. On the other hand, a low symmetry S = 9/2 complex exhibits a much faster rate of ground-state magnetization tunneling, in agreement with HFEPR spectra for a powder sample that gives a rhombic zero-field splitting (ZFS) parameter of E = 0.140 cm?1. The S = 5 Mn3Ni systems exhibit magnetization tunneling that is much faster than seen for the high-symmetry S = 9/2 Mn4 complexes. This can be attributed to their integer-spin ground states. Like the C3 symmetry Mn4 SMMs, the HFEPR spectra for high-symmetry Mn3Ni complexes do not provide measurable evidence for transverse ZFS terms. However, the spectra exhibit broad peaks, suggesting distributions in the local molecular environments brought about by disordered solvate molecules. This disorder likely explains the fast tunneling in the high-symmetry S = 5 Mn3Ni systems, though one cannot rule out fourth- (and higher-) order interactions that cannot be detected by HFEPR due to the broad resonances. The one S = 6 Mn3Zn complex shows an even faster rate of tunneling compared to the isostructural S = 5 Mn3Ni complex. Finally, the S = 4 [Ni(hmp)(dmb)Cl]4 complex provides unique insights into the origin of fourth- (and higher-) order interactions found for many SMMs on the basis of analysis using a giant spin Hamiltonian (GSH) approximation. We conclude that the fourth-order anisotropy found for the S = 4 ground state of [Ni(hmp)(dmb)Cl]4 originates from the second-order ZFS interactions associated with the individual NiII ions, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S < 4) spin-multiplets. The S-mixing is relatively strong in this system because of comparable exchange and anisotropy energy scales. The relatively fast tunneling is a direct consequence of this S-mixing, as opposed to any intrinsic fourth-order (spin–orbit) anisotropy associated with NiII.  相似文献   

8.
The effect of essential oils, such as raspberry ketone, on androgen (AR) receptor was investigated using a MDA-kb2 human breast cancer cell line for predicting potential AR activity. Among them, eugenol had the highest AR antagonistic activity with its IC50 value of 19 μM. Raspberry ketone, which has threefold higher anti-obese activity than that of capsaicin, also had AR antagonist activity with its IC50 value of 252 μM. Based on these findings, a more precise CoMFA model was proposed as follows: pIC50 [log (1/IC50)] = 3.77 + [CoMFA field terms] (n = 39, s = 0.249, r2 = 0.834, scv = 0.507, q2 = 0.311 (three components).  相似文献   

9.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

10.
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf.Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf.The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm2, TfA = 4.9 min; KAPB = 7.5 Gy cm2, TfB = 5.0 min; KAPC = 19.0 Gy cm2, TfC = 7.3 min; KAPD = 52.4 Gy cm2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf1.282) with R2 = 0.85.The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation.  相似文献   

11.
《Inorganica chimica acta》2006,359(7):2015-2022
The reaction of [Cu(tren)(OH2)](ClO4)2 with KCN gave a mononuclear complex [Cu(tren)(CN)](ClO4) (1) (tren = tris(2-aminoethyl)amine). Using 1 as a building block, one pentanuclear compound, [{Cu(tren)(NC)}4Ni](ClO4)6 (2) and two trinuclear complexes, [{Cu(tren)NC}2Co(tren)](ClO4)5 · 2H2O (3), [{Cu(tren)CN}2NiL](ClO4)4 (4) (L = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) were prepared and characterized by single crystal X-ray analysis. In 1, Cu(II) atom adopts a distorted trigonal bipyramidal (TBP) geometry. In 2, the Ni(II) atom occupies the center of the pentanuclear compound with a square-planar coordination geometry. In 3, the six-coordinated Co(III) atom presents a distorted octahedral geometry with four nitrogen atoms from tren and two carbon atoms of bridged cyano groups in cis-positions. In 4, the nickel atom is located in an inversion center and coordinated with two [(tren)CuCN]+ moieties through cyano-bridging ligands. Magnetic susceptibility measurements of 24 show that the magnetic interactions between the heterometallic ions are antiferromagnetical coupling through the cyano bridges with g = 2.25, J = −0.142 cm−1 and J = −0.167 cm−1 for 2, g = 2.06, J = −0.094 cm−1 for 3, and g = 2.20, J = −33.133 cm−1 for 4. The correlations between the structures and the J values are discussed.  相似文献   

12.
《Inorganica chimica acta》2006,359(4):1275-1281
Two new complexes of composition [Cu(2-NO2bz)2(3-pyme)2(H2O)2] (1) and/or [Cu{3,5-(NO2)2bz}2(3-pyme)2] (2) (3-pyme = 3-pyridylmethanol, ronicol or 3-pyridylcarbinol, 2-NO2bz = 2-nitrobenzoate and 3,5-(NO2)2bz = 3,5-dinitrobenzoate) have been prepared and studied by elemental analysis, electronic, infrared and EPR spectroscopy, magnetic susceptibility measurements and the structure of both complexes has been solved. Complex (1) shows an unusual molecular type of structure consisting of the [Cu(2-NO2bz)2(3-pyme)2(H2O)2] molecules held together by hydrogen bonds and van der Waals interactions. Complex (2) exhibits a polymeric chain-like structure [Cu{3,5-(NO2)2bz}2(3-pyme)2]n with copper atoms doubly bridged by two 3-pyridylmethanol molecules and the polymeric molecules are held together by van der Waals interactions. Complex (1) exhibits a magnetic moment μeff = 1.84 B.M. at 300 K that remains nearly constant within the temperature region (5–300 K). Further cooling results in lowering the magnetic moment to μeff = 1.82 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie–Weiss law with Curie constant of 0.423 cm3 K mol−1 and with Weiss constant of −0.06 K. The magnetic moment of (2) exhibits a small increase with a decrease in the temperature (μeff = 1.80 B.M. at 300 K and μeff = 1.85 B.M. at 1.8 K) with Curie constant of 0.409 cm3 K mol−1 and with Weiss constant of +1.1 K, which can indicate a very weak ferromagnetic interaction between the copper atoms within the chain. Applying the molecular field model resulted in obtaining zJ′ values −0.08 cm−1 for complex (1), and −0.07 cm−1 for complex (2), respectively, that could characterize intermolecular and interchain interactions transmitted through π–π stacking.  相似文献   

13.
Mutations in the second EF-hand (D61N, D63N, D65N, and E72A) of S100B were used to study its Ca2 + binding and dynamic properties in the absence and presence of a bound target, TRTK-12. With D63NS100B as an exception (D63NKD = 50 ± 9 μM), Ca2 + binding to EF2-hand mutants were reduced by more than 8-fold in the absence of TRTK-12 (D61NKD = 412 ± 67 μM, D65NKD = 968 ± 171 μM, and E72AKD = 471 ± 133 μM), when compared to wild-type protein (WTKD = 56 ± 9 μM). For the TRTK-12 complexes, the Ca2 +-binding affinity to wild type (WT + TRTKKD = 12 ± 10 μM) and the EF2 mutants was increased by 5- to 14-fold versus in the absence of target (D61N + TRTKKD = 29 ± 1.2 μM, D63N + TRTKKD = 10 ± 2.2 μM, D65N + TRTKKD = 73 ± 4.4 μM, and E72A + TRTKKD = 18 ± 3.7 μM). In addition, Rex, as measured using relaxation dispersion for side‐chain 15N resonances of Asn63 (D63NS100B), was reduced upon TRTK-12 binding when measured by NMR. Likewise, backbone motions on multiple timescales (picoseconds to milliseconds) throughout wild type, D61NS100B, D63NS100B, and D65NS100B were lowered upon binding TRTK-12. However, the X-ray structures of Ca2 +-bound (2.0 Å) and TRTK-bound (1.2 Å) D63NS100B showed no change in Ca2 + coordination; thus, these and analogous structural data for the wild-type protein could not be used to explain how target binding increased Ca2 +-binding affinity in solution. Therefore, a model for how S100B–TRTK‐12 complex formation increases Ca2 + binding is discussed, which considers changes in protein dynamics upon binding the target TRTK-12.  相似文献   

14.
Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB1 and CB2 receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [35S]GTPγS binding.Western blot analysis showed that CB1 receptor immunoreactivity was significantly lower in glioblastoma multiforme (?43%, n = 10; p < 0.05) than in normal post-mortem brain tissue (n = 16). No significant differences were found for astrocytoma (n = 6) and meningioma (n = 8) samples. Conversely, CB2 receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n = 9; p < 0.05) and astrocytoma (471%, n = 4; p < 0.05) than in control brain tissue (n = 10). Finally, the maximal stimulation of [35S]GTPγS binding by WIN 55,212-2 was significantly lower in glioblastomas (134 ± 4%) than in control membranes (183 ± 2%; p < 0.05). The basal [35S]GTPγS binding and the EC50 values were not significantly different between both groups.The present results demonstrate opposite changes in CB1 and CB2 receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.  相似文献   

15.
《Inorganica chimica acta》2001,312(1-2):188-196
The reaction of MoO3 and 2,4,6-tripyridyltriazine (tptz) in water at 180°C for 48 h and pH 5.5 produces (H2tptz)2[Mo8O26]·2H2O in 70% yield. The structure is constructed from δ-Mo8O26 4− clusters, H2tptz2+ and H3O+ cations linked through hydrogen bonding into a network. Crystal data: C18H16Mo4N6O14; monoclinic P21/n; a=10.2225(5) Å, b=14.0072(6) Å, c=18.1154(8) Å, β=93.896(1)°, V=2587.9(2) Å3, Z=4, Dcalc=2.372 g cm−3; R1=0.0271 based on 3212 reflections.  相似文献   

16.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

17.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

18.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

19.
Novel trinuclear Ni(II) complex [Ni3(pmdien)3(btc)(H2O)3](ClO4)3 · 4H2O, 1 where pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, H3btc = 1,3,5-benzenetricarboxylic (trimesic) acid, has been prepared and structurally characterized. Three nickel atoms are bridged by btc trianion and their coordination sphere is completed by three N atoms of pmdien and O atom of the water molecule. The three nickel(II) magnetic centers are equivalent and their coordination spheres are completed to deformed octahedrons. Magnetic susceptibility was measured over the temperature range 1.8–300 K and zJ = ?0.19 cm?1, D = 3.79 cm?1, g = 2.18 parameters were calculated.  相似文献   

20.
《Inorganica chimica acta》2006,359(5):1351-1356
Energy-transfer rate-constants from photo-excited [Ru(N–N)3]2+ (N–N = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (4dmb), 5,5′-dimethyl-2,2′-bipyridine (5dmb)) to [Cr(O–O)3]3− (O–O2− = ox2− ((COO)2), mal2− (CH2(COO)2)) and [Cr(CN)6]3− in encounter complexes were evaluated in aqueous solutions containing alkali metal ion. The rate constant depends on the molecular size of the ruthenium(II) complex: 1.8 × 108 s−1 for [Ru(bpy)3]2+ (molecular radius, r = 5.8 Å), 1.4 × 108 s−1 for [Ru(5dmb)3]2+ (r = 6.1 Å) and 0.96 × 108 s−1 for [Ru(4dmb)3]2+ (r = 6.7 Å) in the system of [Ru(N–N)3]2+–[Cr(ox)3]3− in aqueous solution. However, the rate constant is much more sensitive to the chromate(III) complex than to ruthenium(II) complex; 1.8 × 108 s−1 and 0.43 × 108 s−1 for [Cr(ox)3]3− (r = 4.0 Å) and [Cr(mal)3]3− (r = 4.2 Å) in the [Ru(bpy)3]2+–[Cr(O–O)3]3− systems, respectively. We conclude that the congeniality between the donor’s and acceptor’s ligands in encounter complex plays an important role in energy transfer in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号