共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of self-pollination in self-incompatible Brassicaceae is based on allele-specific trans-activation of the highly polymorphic S-locus receptor kinase (SRK), which is displayed at the surface of stigma epidermal cells, by its even more polymorphic pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein. In an attempt to achieve constitutive activation of SRK and thus facilitate analysis of self-incompatibility (SI) signaling, we coexpressed an Arabidopsis lyrata SCR variant with its cognate SRK receptor in the stigma epidermal cells of Arabidopsis (Arabidopsis thaliana) plants belonging to the C24 accession, in which expression of SRK and SCR had been shown to exhibit a robust SI response. Contrary to expectation, however, coexpression of SRK and SCR was found to inhibit SRK-mediated signaling and to disrupt the SI response. This phenomenon, called cis-inhibition, is well documented in metazoans but has not as yet been reported for plant receptor kinases. We demonstrate that cis-inhibition of SRK, like its trans-activation, is based on allele-specific interaction between receptor and ligand. We also show that stigma-expressed SCR causes entrapment of its SRK receptor in the endoplasmic reticulum, thus disrupting the proper targeting of SRK to the plasma membrane, where the receptor would be available for productive interaction with its pollen coat-derived SCR ligand. Although based on an artificial cis-inhibition system, the results suggest novel strategies of pollination control for the generation of hybrid cultivars and large-scale seed production from hybrid plants in Brassicaceae seed crops and, more generally, for inhibiting cell surface receptor function and manipulating signaling pathways in plants.Ligand receptor signaling plays important roles in cell-cell communication between neighboring cells in a variety of developmental and physiological processes. This communication typically relies on the interaction of transmembrane receptors displayed on the surface of signal-receiving cells with their cognate ligands derived from signal-sending neighboring cells, which, in turn, leads to the activation of receptor-mediated signaling cascades that modify intracellular activities of the signal-receiving cell. Such is the case with communication between pollen grains and stigma epidermal cells, a process that has an important role in directing reproductive success and determining pollination modes (i.e. selfing or outcrossing) in the Brassicaceae. In this family, outcrossing is enforced by self-incompatibility (SI), a mechanism controlled by haplotypes of the S locus, by which the stigma epidermal cells of a plant recognize and reject self pollen grains (i.e. those derived from the same flower, the same plant, or plants expressing the same S-locus haplotype), thus preventing self-pollination, while allowing the growth of tubes from nonself pollen grains (i.e. those derived from plants expressing a different S-locus haplotype; Nasrallah and Nasrallah, 2014a). Inhibition of self pollen in the SI response is initiated by allele-specific interaction between two highly polymorphic proteins encoded at the S locus: the S-locus receptor kinase (SRK), which is localized at the plasma membrane of stigma epidermal cells (Stein et al., 1991, 1996), and its ligand, the S-locus cysteine-rich protein (SCR), which accumulates in the pollen coat and diffuses onto the stigma surface upon pollen-stigma contact (Schopfer et al., 1999; Takayama et al., 2000; Shiba et al., 2001). The interaction of the SRK extracellular domain, or S domain, with its cognate SCR ligand is thought to activate downstream signaling cascades in stigma epidermal cells, which lead to inhibition of pollen germination on the stigma surface and/or pollen tube penetration through the stigma epidermal cell wall. The SRK and SCR genes are the primary determinants of the transition between the outcrossing and selfing modes of mating in the Brassicaceae, as demonstrated by the observation that transformation of SRK and SCR gene pairs derived from self-incompatible Arabidopsis lyrata or Capsella grandiflora restored SI in several accessions of the normally self-fertile Arabidopsis (Arabidopsis thaliana; Nasrallah et al., 2002, 2004; Boggs et al., 2009).Tight regulation of the SI response is critical for ensuring reproductive success in self-incompatible plants. Activation of SRK signaling must be triggered only by pollen-derived cognate SCR ligand upon interaction of stigma epidermal cells with self pollen grains, because constitutive activation of SI signaling in stigma epidermal cells would result in inhibition of nonself as well as self pollen grains and would result in female sterility. This adverse outcome is averted by tight regulation of the SCR gene, which is expressed exclusively in the anthers of self-incompatible plants and whose protein products are localized exclusively in the pollen coat (Schopfer and Nasrallah, 2000; Shiba et al., 2001). For experimental studies of SI, however, constitutive activation of SRK-mediated signaling in stigma epidermal cells would be useful, as it might provide a convenient means of identifying components of the poorly understood SRK-mediated signaling pathway.A reaction that resembles a constitutive SI response, in which stigma epidermal cells inhibit both self and nonself pollen grains, has been obtained by manual application of purified recombinant SCR proteins produced in bacteria (Kachroo et al., 2001; Chookajorn et al., 2004) or synthetic SCR (Takayama et al., 2001) to stigmas that express their cognate SRK receptors. Unlike the highly localized activation induced by pollen-derived SCR at the site of pollen-stigma contact, treatment of the stigma surface with SCR protein can clearly cause global activation of SRK in most, if not all, epidermal cells of a stigma. However, treating stigmas in the numbers required for analysis of SRK signaling is extremely laborious, can damage stigmas, and produces inconsistent results. Therefore, a method that circumvents these problems would be advantageous. In metazoans, constitutive activation of receptor kinases has been shown to result not only from receptor mutations that cause constitutive kinase activity (Webster and Donoghue, 1996; Hirota et al., 1998) and mutations in signaling components that cause ligand-independent activation of downstream cascades (Wang et al., 2012, 2014; Roberts et al., 2013; Han, 2014), but also from ectopic expression of ligands within the same cells as their receptors, as occurs in several pathological conditions (Sporn and Roberts, 1985; Castellano et al., 2006; Krasagakis et al., 2011).Accordingly, an attempt was made to generate Arabidopsis plants having a stable constitutive stigma SI response by coexpressing an SRK variant and its cognate SCR in stigma epidermal cells, which should, in principle, constitutively activate the SI response in these cells. This report shows that, while pollen-derived SCR trans-activates the SRK-mediated SI response, stigma-expressed SCR inhibits the activity of its cognate SRK by causing entrapment of the receptor in the endoplasmic reticulum (ER). This phenomenon is similar in its outcome to the ligand-mediated cis-inhibition phenomenon that had previously been observed in metazoans for some signaling systems that use transmembrane proteins as ligands (Yaron and Sprinzak, 2012) but had not been described for plant receptor-like kinases. The results suggest novel strategies for control of receptor-like kinase activity and manipulation of signaling pathways in plants and for pollination control in hybrid breeding programs and seed production from hybrid plants in the Brassicaceae. 相似文献
2.
Pat Whiteman Beatriz Hernandez de Madrid Paul Taylor Demin Li Rebecca Heslop Nattnee Viticheep Joyce Zi Tan Hideyuki Shimizu Juliana Callaghan Massimo Masiero Ji Liang Li Alison H. Banham Adrian L. Harris Susan M. Lea Christina Redfield Martin Baron Penny A. Handford 《The Journal of biological chemistry》2013,288(10):7305-7312
We have mapped a Jagged/Serrate-binding site to specific residues within the 12th EGF domain of human and Drosophila Notch. Two critical residues, involved in a hydrophobic interaction, provide a ligand-binding platform and are adjacent to a Fringe-sensitive residue that modulates Notch activity. Our data suggest that small variations within the binding site fine-tune ligand specificity, which may explain the observed sequence heterogeneity in mammalian Notch paralogues, and should allow the development of paralogue-specific ligand-blocking antibodies. As a proof of principle, we have generated a Notch-1-specific monoclonal antibody that blocks binding, thus paving the way for antibody tools for research and therapeutic applications. 相似文献
3.
The Notch gene encodes a receptor protein that is involved in many processes during development. Its best understood role is during neurogenesis in a process called ``lateral inhibition.' However, it has been proposed that Notch also has a role in defining the proneural clusters in the first place. This raises the possibility that the Notch protein is acting as a multifunctional receptor. To test this hypothesis, we have carried out a genetic analysis of molecularly characterized Notch alleles to identify alleles that affect only one of the two proposed functions. Here we present evidence that Notch alleles can be identified that appear to affect the function of Notch during either lateral inhibition or the definition of proneural clusters. In addition our results indicate that there may be discrete regions of the Notch protein required for each function. 相似文献
4.
Keller Larkin M Deng WM Holder K Tworoger M Clegg N Ruohola-Baker H 《Development genes and evolution》1999,209(5):301-311
During Drosophila oogenesis the body axes are determined by signaling between the oocyte and the somatic follicle cells that surround the egg
chamber. A key event in the establishment of oocyte anterior-posterior polarity is the differential patterning of the follicle
cell epithelium along the anterior-posterior axis. Both the Notch and epithelial growth factor (EGF) receptor pathways are
required for this patterning. To understand how these pathways act in the process we have analyzed markers for anterior and
posterior follicle cells accompanying constitutive activation of the EGF receptor, loss of Notch function, and ectopic expression
of Delta. We find that a constitutively active EGF receptor can induce posterior fate in anterior but not in lateral follicle
cells, showing that the EGF receptor pathway can act only on predetermined terminal cells. Furthermore, Notch function is
required at both termini for appropriate expression of anterior and posterior markers, while loss of both the EGF receptor
and Notch pathways mimic the Notch loss-of-function phenotype. Ectopic expression of the Notch ligand, Delta, disturbs EGF
receptor dependent posterior follicle cell differentiation and anterior-posterior polarity of the oocyte. Our data are consistent
with a model in which the Notch pathway is required for early follicle cell differentiation at both termini, but is then repressed
at the posterior for proper determination of the posterior follicle cells by the EGF receptor pathway.
Received: 5 November 1998 / Accepted: 14 December 1998 相似文献
5.
Drosophila Notch Receptor Activity Suppresses Hairless Function during Adult External Sensory Organ Development 下载免费PDF全文
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling. 相似文献
6.
Yangkyun Oh Sung-Eun Yoon Qi Zhang Hyo-Seok Chae Ivana Daubnerová Orie T. Shafer Joonho Choe Young-Joon Kim 《PLoS biology》2014,12(10)
Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis. 相似文献
7.
Complex Proteolytic Processing Acts on Delta, a Transmembrane
Ligand for Notch, during Drosophila Development 总被引:1,自引:0,他引:1 下载免费PDF全文
Kristin M. Klueg Todd R. Parody Marc A.T. Muskavitch 《Molecular biology of the cell》1998,9(7):1709-1723
Delta functions as a cell nonautonomous membrane-bound ligand that binds to Notch, a cell-autonomous receptor, during cell fate specification. Interaction between Delta and Notch leads to signal transduction and elicitation of cellular responses. During our investigations to further understand the biochemical mechanism by which Delta signaling is regulated, we have identified four Delta isoforms in Drosophila embryonic and larval extracts. We have demonstrated that at least one of the smaller isoforms, Delta S, results from proteolysis. Using antibodies to the Delta extracellular and intracellular domains in colocalization experiments, we have found that at least three Delta isoforms exist in vivo, providing the first evidence that multiple forms of Delta exist during development. Finally, we demonstrate that Delta is a transmembrane ligand that can be taken up by Notch-expressing Drosophila cultured cells. Cell culture experiments imply that full-length Delta is taken up by Notch-expressing cells. We present evidence that suggests this uptake occurs by a nonphagocytic mechanism. 相似文献
8.
9.
10.
11.
The evolutionarily conserved Notch-mediated intercellular signaling pathway is essential for proper embryonic development of many tissues and organs. Recent data suggest that Notch receptors and their membrane-bound ligands Delta and Serrate are involved in both patterning and cell fate determination during odontogenesis. It remains, however, uncertain if Notch signaling is important for tooth homeostasis and regeneration. Here we report on the expression of Notch receptors and the Delta1 ligand in dental pulp of normal and injured adult rat teeth. Notch receptors were absent from normal adult dental tissues, whereas expression was upregulated after injury. In injured teeth, Notch2 was expressed in mesenchymal cells of the pulp both close to the site of injury (i.e., in the dental crown) and at a distance from it (i.e., in the dental roots), Notch3 expression was mainly associated with vascular structures, while Notch1 expression was restricted to few pulpal cells close to the lesion. None of them was expressed in odontoblasts. Expression of Delta1 was upregulated in odontoblasts of the injured teeth, as well as in vascular structures. These results demonstrate the reactivation of the Notch signaling pathway during wound healing and, furthermore, highlight the similarity between developmental and regenerative processes. 相似文献
12.
We have investigated the function of the neurogenic gene Notch (N) during development of the adult sensilla of Drosophila. Heat pulses were applied to flies carrying the temperature-sensitive Notch allele Nts1 at different larval and pupal stages. We can show that the reduction of Notch+ function during a short interval prior to the onset of sensillum precursor division, resulting from a heat pulse between 0 and 14 hr after puparium formation (apf), leads to an increase in microchaete precursors at the expense of epidermal cells. The structure and cellular composition of the sensilla produced by these supernumerary precursors are normal. Later heat pulses which include the interval immediately after sensillum precursor division (14-20 hr apf) lead, among the progeny of the sensillum precursors, to a hyperplasia of sensory neurons, at the expense of accessory cells. The resulting "sensilla" consist of neurons only and lack the external cuticular structures (i.e., shaft, socket). These results demonstrate that similar mechanisms both of which involve the function of the Notch gene may be operating to sort out (premitotic) sensillum precursors from epidermal precursors and (postmitotic) sensory neurons from accessory cells. They further show that in postmitotic sensillum cells the differentiative fate is not yet irreversibly fixed, but presumably requires cell-cell interaction to become established. 相似文献
13.
The Notch locus of Drosophila melanogaster 总被引:48,自引:0,他引:48
14.
A homolog of Drosophila Notch expressed during mammalian development. 总被引:20,自引:0,他引:20
15.
16.
17.
The anterior-posterior axis of Drosophila becomes polarized early in oogenesis, when the oocyte moves to the posterior of the germline cyst because it preferentially adheres to posterior follicle cells. The source of this asymmetry is unclear, however, since anterior and posterior follicle cells are equivalent until midoogenesis, when Gurken signaling from the oocyte induces posterior fate. Here, we show that asymmetry arises because each cyst polarizes the next cyst through a series of posterior to anterior inductions. Delta signaling from the older cyst induces the anterior polar follicle cells, the anterior polar cells signal through the JAK/STAT pathway to induce the formation of the stalk between adjacent cysts, and the stalk polarizes the younger anterior cyst by inducing the shape change and preferential adhesion that position the oocyte at the posterior. The anterior-posterior axis is therefore established by a relay mechanism, which propagates polarity from one cyst to the next. 相似文献
18.
The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity. 相似文献
19.
Peter W. Hildebrand Patrick Scheerer Jung Hee Park Hui-Woog Choe Ronny Piechnick Oliver P. Ernst Klaus Peter Hofmann Martin Heck 《PloS one》2009,4(2)
The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM) structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7), and B (between TM5 and 6), respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 Å and is between 11.6 and 3.2 Å wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal β-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90° elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through B. 相似文献
20.
本文介绍了细胞因子/生长因子和受体相互作用时存在的多重结合方式;有共受体参与的多体结合,以及同时具有蛋白质-蛋白质,蛋白质-糖类不同性质的多点结合;并讨论了多重结合可能的生物学意义。 相似文献