首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Protein tyrosine phosphatases (PTPs) play key roles in switching off tyrosine phosphorylation cascades, such as initiated by cytokine receptors. We have used substrate-trapping mutants of a large set of PTPs to identify members of the PTP family that have substrate specificity for the phosphorylated human GH receptor (GHR) intracellular domain. Among 31 PTPs tested, T cell (TC)-PTP, PTP-beta, PTP1B, stomach cancer-associated PTP 1 (SAP-1), Pyst-2, Meg-2, and PTP-H1 showed specificity for phosphorylated GHR that had been produced by coexpression with a kinase in bacteria. We then used GH-induced, phosphorylated GH receptor, purified from overexpressing mammalian cells, in a Far Western-based approach to test whether these seven PTPs were also capable of recognizing ligand-induced, physiologically phosphorylated GHR. In this assay, only TC-PTP, PTP1B, PTP-H1, and SAP-1 interacted with the mature form of the phosphorylated GHR. In parallel, we show that these PTPs recognize very different subsets of the seven GHR tyrosines that are potentially phosphorylated. Finally, mRNA tissue distribution of these PTPs by RT-PCR analysis and coexpression of the wild-type PTPs to test their ability to dephosphorylate ligand-activated GHR suggest PTP-H1 and PTP1B as potential candidates involved in GHR signaling.  相似文献   

3.
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs.  相似文献   

4.
5.
Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are important cell-signaling regulators, as well as potential drug targets for a range of human diseases. Chemical tools for selectively targeting the activities of individual PTPs would help to elucidate PTP signaling roles and potentially expedite the validation of PTPs as therapeutic targets. We have recently reported a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs, in which a tricysteine moiety is engineered within the PTP catalytic domain at a conserved location outside of the active site. Introduction of the tricysteine motif, which does not exist in any wild-type PTP, serves to sensitize target PTPs to inhibition by a biarsenical compound, providing a generalizable strategy for the generation of allosterically sensitized (as) PTPs. Here we show that the potency, selectivity, and kinetics of asPTP inhibition can be significantly improved by exploring the inhibitory action of a range of biarsenical compounds that differ in interarsenical distance, steric bulk, and electronic structure. By investigating the inhibitor sensitivities of five asPTPs from four different subfamilies, we have found that asPTP catalytic domains can be broadly divided into two groups: one that is most potently inhibited by biarsenical compounds with large interarsenical distances, such as AsCy3-EDT2, and one that is most potently inhibited by compounds with relatively small interarsenical distances, such as FlAsH-EDT2. Moreover, we show that a tetrachlorinated derivative of FlAsH-EDT2, Cl4FlAsH-EDT2, targets asPTPs significantly more potently than the parent compound, both in vitro and in asPTP-expressing cells. Our results show that biarsenicals with altered interarsenical distances and electronic properties are important tools for optimizing the control of asPTP activity and, more broadly, suggest that diversification of biarsenical libraries can serve to increase the efficacy of these compounds in targeted control of protein function.  相似文献   

6.
The soybean looper, Chrysodeixis (Pseudoplusia) includens (Lepidoptera: Noctuidae) is an economically important insect pest and a highly permissive host for the parasitoid Microplitis demolitor and its associated polydnavirus M. demolitor bracovirus (MdBV). Here we established a cell line from C. includens embryos designated UGA-CiE1 cells. CiE1 cells morphologically resemble granulocytes, which are a subpopulation of C. includens hemocytes. Antibody and RT-PCR analyses indicated that CiE1 cells express several molecular and functional markers that identify granulocytes. We further determined that CiE1 cells are permissive to infection by MdBV, exhibiting alterations very similar to MdBV-infected granulocytes, and Autographa californica multiple nucleopolyhedrosis virus (AcMNPV). Combined with the ability to transfect CiE1 cells with high efficiency and knock down expression of viral genes by RNA interference, we conclude this cell line has several attributes of value for studying immune interactions with polydnaviruses and potentially other pathogens.  相似文献   

7.
The braconid wasp Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of several noctuid moths. A key function of MdBV in parasitism is suppression of the host's cellular immune response. Prior studies in the host Pseudoplusia includens indicated that MdBV blocks encapsulation by preventing two types of hemocytes, plasmatocytes and granulocytes, from adhering to foreign targets. The other main immune response mediated by insect hemocytes is phagocytosis. The goal of this study was to determine which hemocyte types were phagocytic in P. includens and to assess whether MdBV infection affects this defense response. Using the bacterium Escherichia coli and inert polystyrene beads as targets, our results indicated that the professional phagocyte in P. includens is granulocytes. The phagocytic responses of granulocytes were very similar to those of High Five cells that prior studies have suggested are a granulocyte-like cell line. MdBV infection dose-dependently disrupted phagocytosis in both cell types by inhibiting adhesion of targets to the cell surface. The MdBV glc1.8 gene encodes a cell surface glycoprotein that had previously been implicated in disruption of adhesion and encapsulation responses by immune cells. Knockdown of glc1.8 expression by RNA interference (RNAi) during the current study rescued the ability of MdBV-infected High Five cells to phagocytize targets. Collectively, these results indicate that glc1.8 is a key virulence determinant in disruption of both adhesion and phagocytosis by insect immune cells.  相似文献   

8.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

9.
The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists.  相似文献   

10.
11.

Background

Protein Tyrosine Phosphatases (PTPs) are enzymes that catalyze phosphotyrosine dephosphorylation and modulate cell differentiation, growth and metabolism. In mammals, PTPs play a key role in the modulation of canonical pathways involved in metabolism and immunity. PTP1B is the prototype member of classical PTPs and a major target for treating human diseases, such as cancer, obesity and diabetes. These signaling enzymes are, hence, targets of a wide array of inhibitors. Anautogenous mosquitoes rely on blood meals to lay eggs and are vectors of the most prevalent human diseases. Identifying the mosquito ortholog of PTP1B and determining its involvement in egg production is, therefore, important in the search for a novel and crucial target for vector control.

Methodology/Principal Findings

We conducted an analysis to identify the ortholog of mammalian PTP1B in the Aedes aegypti genome. We identified eight genes coding for classical PTPs. In silico structural and functional analyses of proteins coded by such genes revealed that four of these code for catalytically active enzymes. Among the four genes coding for active PTPs, AAEL001919 exhibits the greatest degree of homology with the mammalian PTP1B. Next, we evaluated the role of this enzyme in egg formation. Blood feeding largely affects AAEL001919 expression, especially in the fat body and ovaries. These tissues are critically involved in the synthesis and storage of vitellogenin, the major yolk protein. Including the classical PTP inhibitor sodium orthovanadate or the PTP substrate DiFMUP in the blood meal decreased vitellogenin synthesis and egg production. Similarly, silencing AAEL001919 using RNA interference (RNAi) assays resulted in 30% suppression of egg production.

Conclusions/Significance

The data reported herein implicate, for the first time, a gene that codes for a classical PTP in mosquito egg formation. These findings raise the possibility that this class of enzymes may be used as novel targets to block egg formation in mosquitoes.  相似文献   

12.
13.
Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. Unfortunately, H2O2 is poorly reactive in chemical terms and the second order rate constants for the H2O2-mediated PTP inactivation are ~ 10 M− 1 s− 1, which is too slow to be compatible with the transient signaling events occurring at the physiological concentrations of H2O2. We find that hydroxyl radical is produced from H2O2 solutions in the absence of metal chelating agent by the Fenton reaction. We show that the hydroxyl radical is capable of inactivating the PTPs and the inactivation is active site directed, through oxidation of the catalytic Cys to sulfenic acid, which can be reduced by low molecular weight thiols. We also show that hydroxyl radical is a kinetically more efficient oxidant than H2O2 for inactivating the PTPs. The second-order rate constants for the hydroxyl radical-mediated PTP inactivation are at least 2–3 orders of magnitude higher than those mediated by H2O2 under the same conditions. Thus, hydroxyl radical generated in vivo may serve as a more physiologically relevant oxidizing agent for PTP inactivation. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   

14.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation.  相似文献   

15.
Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo.We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion.  相似文献   

16.
Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered ‘undruggable’, in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein–protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1–3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1–3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.  相似文献   

17.
18.
Bruguiesulfurol (1), a cyclic 4-hydroxy-dithiosulfonate isolated from mangrove plant Bruguiera gymnorrhiza, was concisely synthesized for the first time in four steps, and a series of its synthetic derivatives were evaluated for in vitro inhibitory effects on PTP1B and related PTPs. Some derivatives were found to have improved pharmacological profile compared with hit 1. Among them, 5a showed the potent selectivity towards PTP1B over other PTPs, including TCPTP, and 7j exhibited the strongest PTP1B inhibitory activity with an IC50 value of 4.54 μM.  相似文献   

19.
Protein tyrosine phosphatases (PTPs) consist of a large family of enzymes known to play important roles in controlling virtually all aspects of cellular processes. However, assigning functional significance of PTPs in normal physiology and in diseases remains a major challenge in cell signaling. Since the function of a PTP is directly associated with its intrinsic activity, which is subject to post-translational regulation, new tools are needed to monitor the dynamic activities of PTPs, rather than mere abundance, on a global scale within the physiologically relevant environment of cells. To meet this objective, we report the synthesis and characterization of two rhodamine-conjugated probes that covalently label the active site of the PTPs in an activity-dependent manner, thus providing a direct readout of PTP activity and superior sensitivity, robustness, and quantifiability to previously reported biotinylated probes. We present evidence that the fluorescent probes can be used to identify new PTP markers and targets for potential diagnosis and treatment of human diseases. We also show that the fluorescent probes are capable of monitoring H(2)O(2)-mediated PTP inactivation, which should facilitate the study of regulated H(2)O(2) production as a new tier of control over tyrosine phosphorylation-dependent signal transduction. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by PTPs and contribute to the discovery of PTPs as novel therapeutic targets.  相似文献   

20.
Protein tyrosine phosphatases (PTPs) constitute a large family of enzymes that play key roles in cell signaling. Deregulation of PTP activity results in aberrant tyrosine phosphorylation, which has been linked to the etiology of several human diseases, including cancer. Since phosphate removal by the PTPs can both enhance and antagonize cellular signaling, it is essential to elucidate the physiological context in which PTPs operate. Two powerful proteomic approaches have been developed to rapidly establish the exact functional roles for every PTP, both in normal cellular physiology and in pathogenic conditions. In the first, an affinity-based substrate-trapping approach has been employed for PTP substrate identification. Identification and characterization of specific PTP-substrate interactions will associate functions with PTP as well as implicate PTP to specific signaling pathways. In the second, a number of activity-based PTP probes have been developed that can provide a direct readout of the functional state of the PTPs in complex proteomes. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by the PTPs and contribute to the discovery of PTPs as novel therapeutic targets. Effective application of these proteomic techniques will accelerate the functional characterization of PTPs, thereby facilitating our understanding of PTPs in cell signaling and in diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号