首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This Letter describes an efficient approach by integrating virtual screening with bioassay technology for finding small organic inhibitors targeting β-secretase (BACE-1). Fifteen hits with inhibitory potencies ranging from 2.8 to 118 μM (IC50) against β-secretase were successfully identified. Compound 12 with IC50 of 2.8 μM is the most potent hit against BACE-1. Docking simulation from gold 3.0 suggests putative binding mode of 12 in BACE-1 and potential key pharmacophore groups for further designing of non-peptide compounds as more powerful inhibitors against BACE-1.  相似文献   

3.
Fenofibrate, a drug in the fibrate class of amphiphathic carboxylic acids, has multiple blood lipid modifying actions, which are beneficial to the prevention of atherosclerosis. One of its benefits is in lowering fasting and postprandial blood triglyceride (TG) concentrations. The goal of this study was to determine whether the hypotriglyceridemic actions of fenofibrate in the postprandial state include alterations in TG and fatty acid metabolism in the small intestine. We found that the hypotriglyceridemic actions of fenofibrate in the postprandial state of high-fat (HF) fed mice include a decrease in supply of TG for secretion by the small intestine. A decreased supply of TG for secretion was due in part to the decreased dietary fat absorption and increased intestinal fatty acid oxidation in fenofibrate compared to vehicle treated HF fed mice. These results suggest that the effects of fenofibrate on the small intestine play a critical role in the hypotriglyceridemic effects of fenofibrate.  相似文献   

4.
5.
6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.  相似文献   

6.
Current evidence suggests that Alzheimer's disease (AD) is a multi-factorial disease that starts with accumulation of multiple proteins. We have previously proposed that inhibition of γ-secretase may impair membrane recycling causing neurodegeneration starting at synapses (Sambamurti K., Suram A., Venugopal C., Prakasam A., Zhou Y., Lahiri D. K. and Greig N. H. A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr. Alzheimer Res., 3, 2006, 81). We also proposed familal AD mutations increase Aβ42 by inhibiting γ-secretase. Herein, we discuss the failure of Eli Lilly's γ-secretase inhibitor, semagacestat, in clinical trials in the light of our hypothesis, which extends the problem beyond toxicity of Aβ aggregates. We elaborate that γ-secretase inhibitors lead to accumulation of amyloid precursor protein C-terminal fragments that can later be processed by γ-secretase to yields bursts of Aβ to facilitate aggregation. Although we do not exclude a role for toxic Aβ aggregates, inhibition of γ-secretase can affect numerous substrates other than amyloid precursor protein to affect multiple pathways and the combined accumulation of multiple peptides in the membrane may impair its function and turnover. Taken together, protein processing and turnover pathways play an important role in maintaining cellular homeostasis and unless we clearly see consistent disease-related increase in their levels or activity, we need to focus on preserving their function rather than inhibiting them for treatment of AD and similar diseases.  相似文献   

7.
Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD. In addition to processing APP, γ-secretase also catalyzes proteolytic cleavage of other transmembrane substrates, with the best characterized one being the cell surface receptor Notch. GSIs reduce Aβ production in animals and humans but also cause significant side effects because of the inhibition of Notch processing. The development of GSIs that reduce Aβ production and have less Notch-mediated side effect liability is therefore an important goal. γ-Secretase is a large membrane protein complex with four components, two of which have multiple isoforms: presenilin (PS1 or PS2), aph-1 (aph-1a or aph-1b), nicastrin, and pen-2. Here we describe the reconstitution of four γ-secretase complexes in Sf9 cells containing PS1--aph-1a, PS1--aph-1b, PS2--aph-1a, and PS2--aph-1b complexes. While PS1--aph-1a, PS1--aph-1b, and PS2--aph-1a complexes displayed robust γ-secretase activity, the reconstituted PS2--aph-1b complex was devoid of detectable γ-secretase activity. γ-Secretase complexes containing PS1 produced a higher proportion of the toxic species Aβ42 than γ-secretase complexes containing PS2. Using the reconstitution system, we identified MRK-560 and SCH 1500022 as highly selective inhibitors of PS1 γ-secretase activity. These findings may provide important insights into developing a new generation of γ-secretase inhibitors with improved side effect profiles.  相似文献   

8.
9.
Based on X-ray crystallographic analysis of a peroxisome proliferator-activated receptor (PPAR) α/δ dual agonist complexed with human PPARs ligand binding domain (LBD), we previously reported the design and synthesis of a pyrene-based fluorescent PPARα/δ co-agonist 2. Here, we found that the fluorescence intensity of 2 increased upon binding to hPPARα-LBD, in a manner dependent upon the concentration of the LBD. But, surprisingly, the fluorescence intensity of 2 decreased concentration-dependently upon binding to hPPRδ-LBD. Site-directed mutagenesis of the two hPPAR subtypes clearly indicated that Trp264 of hPPARδ-LBD, located between H2' helix and H3 helix (omega loop), is critical for the concentration-dependent decrease in fluorescence intensity, which is suggested to be due to fluorescence resonance energy transfer (FRET) from the pyrene moiety of bound 2 to the nearby side-chain indole moiety of Trp264 in the hPPARδ-LBD.  相似文献   

10.
The present study explored the involvement of miR-302a in adipocyte differentiation via interaction with 3′-untranslated region of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA. In differentiating 3T3-L1 adipocytes, expression of miR-302a was negatively correlated with that of the adipogenic gene aP2 and PPARγ. Overexpression of miR-302a inhibited adipogenic differentiation with lipid accumulation, and inversely anti-miR-302a increased the differentiation. In silico analysis revealed a complementary region of miR-302a seed sequence in 3′-UTR of PPARγ mRNA. Luciferase assay showed the direct interaction of miR-302a with PPARγ at the cellular level. The miR-302a inhibition of adipocyte differentiation was reversed by PPARγ overexpression. These findings suggest that miR-302a might be a negative regulator of adipocyte differentiation and that the dysregulation of miR-302a should lead to metabolic disorders.  相似文献   

11.
The structural modification of a series of [3.3.1] bicyclic sulfonamide based γ-secretase inhibitors is described. Appropriate substitution on the bicyclic scaffold provides a significant increase in the metabolic stability of the compounds resulting in an improved in vivo metabolic profile.  相似文献   

12.
Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein.  相似文献   

13.
Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ(-/-) mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.  相似文献   

14.
Utilizing a pharmacophore hypothesis, previously described γ-secretase inhibiting HTS hits were evolved into novel tricyclic sulfonamide–pyrazoles, with high in vitro potency, good brain penetration, low metabolic stability, and high clearance.  相似文献   

15.
In this study, we designed and synthesized several novel “Y”-shaped biaryl PPARδ agonists. Structure-activity relationship (SAR) studies demonstrated that compound 3a was the most active agonist with an EC50 of 2.6?nM. We also synthesized and evaluated enantiospecific R and S isomers of compound 3a to confirm that R isomer (EC50?=?0.7?nM) shows much more potent activity than S isomer (EC50?=?6.1?nM). Molecular docking studies between the PPAR ligand binding domain and enantiospecific R and S isomers of compound 3a were performed. In vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) and in vivo PK profiles show that compound 3a possesses superior drug-like properties including good bioavailability. Our overall results clearly demonstrate that this orally administrable PPARδ agonist 3a is a viable drug candidate for the treatment of various PPARδ-related disorders.  相似文献   

16.
17.
The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs. This has prompted the development of selective PPARγ modulators (SPPARMs), compounds that promote glucose homeostasis but with reduced side effects due to partial PPARγ agonism. However, this also results in partial agonism with respect to PPARγ target genes promoting glucose homeostasis. Using a gene expression-based screening approach we identified N-acetylfarnesylcysteine (AFC) as both a full and partial agonist depending on the PPARγ target gene (differential SPPARM). AFC activated PPARγ as effectively as rosiglitazone with regard to Adrp, Angptl4, and AdipoQ, but was a partial agonist of aP2, a PPARγ target gene associated with increased adiposity. Induction of adipogenesis by AFC was also attenuated compared with rosiglitazone. Reporter, ligand binding assays, and dynamic modeling demonstrate that AFC binds and activates PPARγ in a unique manner compared with other PPARγ ligands. Importantly, treatment of mice with AFC improved glucose tolerance similar to rosiglitazone, but AFC did not promote weight gain to the same extent. Finally, AFC had effects on adipose tissue remodeling similar to those of rosiglitazone and had enhanced antiinflammatory effects. In conclusion, we describe a new approach for the identification of differential SPPARMs and have identified AFC as a novel class of PPARγ ligand with both full and partial agonist activity in vitro and in vivo.  相似文献   

18.
19.
20.
A novel series of P2–P4 macrocyclic HCV NS3/4A protease inhibitors with α-amino cyclic boronates as warheads at the P1 site was designed and synthesized. When compared to their linear analogs, these macrocyclic inhibitors exhibited a remarkable improvement in cell-based replicon activities, with compounds 9a and 9e reaching sub-micromolar potency in replicon assay. The SAR around α-amino cyclic boronates clearly established the influence of ring size, chirality and of the substitution pattern. Furthermore, X-ray structure of the co-crystal of inhibitor 9a and NS3 protease revealed that Ser-139 in the enzyme active site traps boron in the warhead region of 9a, thus establishing its mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号