首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a KI of 3.7–4.5 μM, whereas the remaining derivatives showed inhibition constants in the range of 6.0–1560 μM for hCA I and of 6.0–1050 μM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (KIs of 7.6–12.3 μM) whereas the arylalkenyl and aryl–alkyl derivatives generally showed weaker inhibitory properties (KIs of 34–531 μM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)2 moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.  相似文献   

2.
Thiadiazole derivatives 124 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50 = 2.16 ± 0.01–58.06 ± 1.60 μM as compare to standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking study was conducted in order to establish the structure–activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques 1H, 13C NMR, and EIMS.  相似文献   

3.
Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson’s disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50 = 500 nM), significantly. Another potent inhibitor 1 (IC50 = 2.9 μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Kiapp = 1.48 nM, k3 = 0.0033 nM−1 min−1 and k4 = 0.0049 min−1. Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.  相似文献   

4.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

5.
We report for the first time kinetic and thermodynamic properties of soluble acid invertase (SAI) of sugarcane (Saccharum officinarum L.) salt sensitive local cultivar CP 77-400 (CP-77). The SAI was purified to apparent homogeneity on FPLC system. The crude enzyme was about 13 fold purified and recovery of SAI was 35%. The invertase was monomeric in nature and its native molecular mass on gel filtration and subunit mass on SDS-PAGE was 28 kDa. SAI was highly acidic having an optimum pH lower than 2. The acidic limb was missing. Proton transfer (donation and receiving) during catalysis was controlled by the basic limb having a pKa of 2.4. Carboxyl groups were involved in proton transfer during catalysis. The kinetic constants for sucrose hydrolysis by SAI were determined to be: km = 55 mg ml?1, kcat = 21 s?1, kcat/km = 0.38, while the thermodynamic parameters were: ΔH* = 52.6 kJ mol?1, ΔG* = 71.2 kJ mol?1, ΔS* = ?57 J mol?1 K?1, ΔG*E–S = 10.8 kJ mol?1 and ΔG*E–T = 2.6 kJ mol?1. The kinetics and thermodynamics of irreversible thermal denaturation at various temperatures 53–63 °C were also determined. The half -life of SAI at 53 and 63 °C was 112 and 10 min, respectively. At 55 °C, surprisingly the half -life increased to twice that at 53 °C. ΔG*, ΔH* and ΔS* of irreversible thermal stability of SAI at 55 °C were 107.7 kJ mol?1, 276.04 kJ mol?1 and 513 J mol?1K?1, respectively.  相似文献   

6.
Docosahexaenoic acid (DHA) is an important polyunsatured fatty acid (PUFA) which can be purified from tuna fish oil fatty acids by selective enzymatic esterification. The present paper investigates the kinetic study for selective esterification of tuna fish oil fatty acids with butanol catalyzed by Rhizopus oryzae lipase (ROL) in biphasic solvent system. Under the most suitable reaction conditions, 76.2% esterification was achieved in 24 h. Different kinetic models for esterification given by Segel [1], Oliveira et al. [2], Gogoi et al. [3], and Kraai et al. [4] were tested for fitting the esterification data and the model given by Oliveira et al. [2] was found to be most suitable. The model given by Prazeres et al. [5] for hydrolysis was also tested for esterification and the model with second order product inhibition was found to provide better match between the predicted and experimental values than that of model by Oliveira et al. [2]. The kinetic model was fitted using MATLAB® to determine the best kinetic parameters. The average value of kinetic constants using the model given by Prazeres et al. were estimated as Km = 23.6 μmoles FFA/ml, Ki1 = 4.6 × 10−5 μmoles FFA/mg enzyme h, Ki2 = 0.0062 μmoles FFA/mg enzyme h and K2 = 149.5 μmoles FFA/mg enzyme h.  相似文献   

7.
Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of aromatic, arylalkenyl- and arylalkylboronic acids was investigated. Aromatic, 4-phenylsubstituted- and 2-naphthylboronic acids were the best Can2 inhibitors, with inhibition constants in the range of 8.5–11.5 μM, whereas arylalkenyl and aryalkylboronic acids showed KIs in the range of 428–3040 μM. Nce103 showed a similar inhibition profile, with the 4-phenylsubstituted- and 2-naphthylboronic acids possessing KIs in the range of 7.8–42.3 μM, whereas the arylalkenyl and aryalkylboronic acids were weaker inhibitors (KIs of 412–5210 μM). The host human enzymes CA I and II were also effectively inhibited by these boronic acids. The B(OH)2 moiety is thus a new zinc-binding group for designing effective inhibitors of the α- and β-CAs.  相似文献   

8.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

9.
We review an extensive body of single-crystal high-frequency electron paramagnetic resonance (HFEPR) data in order to determine the transverse spin Hamiltonian parameters that control the tunneling of the direction of magnetization in a variety of integer and half-integer-spin single-molecule magnets (SMMs). The SMMs studied are members of the following families: S = 9/2 [Mn4O3Cl]6+; S = 5 [Mn3NiO4]6+; S = 6 [Mn3ZnO4]6+; and S = 4 [Ni4(OR)4]4+. HFEPR spectra for the half-integer S = 9/2 Mn4 complexes that have C3 symmetry do not provide measurable evidence for transverse spin Hamiltonian terms. This finding is consistent with the relatively large coercive field seen in the magnetization hysteresis loops for these complexes. On the other hand, a low symmetry S = 9/2 complex exhibits a much faster rate of ground-state magnetization tunneling, in agreement with HFEPR spectra for a powder sample that gives a rhombic zero-field splitting (ZFS) parameter of E = 0.140 cm?1. The S = 5 Mn3Ni systems exhibit magnetization tunneling that is much faster than seen for the high-symmetry S = 9/2 Mn4 complexes. This can be attributed to their integer-spin ground states. Like the C3 symmetry Mn4 SMMs, the HFEPR spectra for high-symmetry Mn3Ni complexes do not provide measurable evidence for transverse ZFS terms. However, the spectra exhibit broad peaks, suggesting distributions in the local molecular environments brought about by disordered solvate molecules. This disorder likely explains the fast tunneling in the high-symmetry S = 5 Mn3Ni systems, though one cannot rule out fourth- (and higher-) order interactions that cannot be detected by HFEPR due to the broad resonances. The one S = 6 Mn3Zn complex shows an even faster rate of tunneling compared to the isostructural S = 5 Mn3Ni complex. Finally, the S = 4 [Ni(hmp)(dmb)Cl]4 complex provides unique insights into the origin of fourth- (and higher-) order interactions found for many SMMs on the basis of analysis using a giant spin Hamiltonian (GSH) approximation. We conclude that the fourth-order anisotropy found for the S = 4 ground state of [Ni(hmp)(dmb)Cl]4 originates from the second-order ZFS interactions associated with the individual NiII ions, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S < 4) spin-multiplets. The S-mixing is relatively strong in this system because of comparable exchange and anisotropy energy scales. The relatively fast tunneling is a direct consequence of this S-mixing, as opposed to any intrinsic fourth-order (spin–orbit) anisotropy associated with NiII.  相似文献   

10.
The effect of essential oils, such as raspberry ketone, on androgen (AR) receptor was investigated using a MDA-kb2 human breast cancer cell line for predicting potential AR activity. Among them, eugenol had the highest AR antagonistic activity with its IC50 value of 19 μM. Raspberry ketone, which has threefold higher anti-obese activity than that of capsaicin, also had AR antagonist activity with its IC50 value of 252 μM. Based on these findings, a more precise CoMFA model was proposed as follows: pIC50 [log (1/IC50)] = 3.77 + [CoMFA field terms] (n = 39, s = 0.249, r2 = 0.834, scv = 0.507, q2 = 0.311 (three components).  相似文献   

11.
The series of imidazoldine-2-thiones 2 and tetrahydropyrimidine-2-thiones 3 were discovered as inhibitor of α-MSH-induced melanin production in melanoma B16 cells. The primary bioassay showed that 1-(4-ethylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3e (>100% inhibition at 10 μM, IC50 = 1.2 μM) and 1-(4-tert-butylbenzyl)-tetrahydropyrimidine-2(1H)-thione 3f (>100% inhibition at 10 μM, IC50 = 0.76 μM) exhibited potent inhibitory effect against α-MSH-induced melanin production. Compounds 3 inhibit the biosynthesis of tyrosinase without affecting its catalytic activity in melanogenesis.  相似文献   

12.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

13.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

14.
《Inorganica chimica acta》2006,359(4):1135-1146
We are reporting the stability constants of the different complexes between phosphonoacetic acid (PAA), phosphonoformic acid (PFA), aminomethylphosphonic acid (AMPA), aminoethylphosphonic acid (AEPA) and methylenediphosphonic acid (MDP) with the aluminum metal ion in aqueous solutions. (In this study the term aluminum is reserved for the 3+ ion.) The affinity of the phosphonic acid derivatives to chelate aluminum has been tested by potentiometric titrations with I = 0.10 M KNO3 at 25 ± 0.1 °C. The proposed aluminum–ligand complex structures have been confirmed by 31P NMR, 13C NMR, and 27Al NMR experiments. Both PAA and PFA formed simple one to one complexes. The respective values for PAA are log β111 = 13.57, log β110 = 10.58, and log β11−1 = 5.84. The respective values for PFA are log β112 = 15.24, log β111 = 13.11, and log β110 = 6.88. In contrast to PAA and PFA, the major species formed with AMPA and AEPA consist of a series of dimeric complexes. The 31P NMR spectra of these complexes indicate that the amine groups do not co-ordinate to aluminum and remain protonated. In addition to these dimeric complexes, a monoprotonated monomer of Al–AMPA also has been detected. The 27Al NMR experiments indicated that the aluminum is hexacoordinated in all the complexes in this study and the hydroxide ion did not remove aluminium from its complexes. Among the ligands studied, PAA and PFA were able to solubilize aluminum at physiological pH. A comparison between the acidities and the chelating properties of the ligands used is presented.  相似文献   

15.
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf.Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf.The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm2, TfA = 4.9 min; KAPB = 7.5 Gy cm2, TfB = 5.0 min; KAPC = 19.0 Gy cm2, TfC = 7.3 min; KAPD = 52.4 Gy cm2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf1.282) with R2 = 0.85.The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation.  相似文献   

16.
In this study, twenty-five (25) substituted aryl thiazoles (SAT) 125 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 μM). Among them, compounds 1, 48, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37 ± 0.56–46.72 ± 1.80 μM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21 ± 4.15 μM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72 ± 1.8, and 19.86 ± 0.11 μM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.  相似文献   

17.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

18.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

19.
Activated organophosphate (OP) insecticides and chemical agents inhibit acetylcholinesterase (AChE) to form OP-AChE adducts. Whereas the structure of the OP correlates with the rate of inhibition, the structure of the OP-AChE adduct influences the rate at which post-inhibitory reactivation or aging phenomena occurs. In this report, we prepared a panel of β-substituted ethoxy and γ-substituted propoxy phosphonoesters of the type p-NO2PhO-P(X)(R)[(O(CH2)nZ] (R = Me, Et; X = O, S; n = 2, 3; Z = halogen, OTs) and examined the inhibition of three AChEs by select structures in the panel. The β-fluoroethoxy methylphosphonate analog (R = Me, Z = F, n = 2) was the most potent anti-AChE compound comparable (ki ~6 × 106 M?1 min?1) to paraoxon against EEAChE. Analogs with Z = Br, I, or OTs were weak inhibitors of the AChEs, and methyl phosphonates (R = Me) were more potent than the corresponding ethyl phosphonates (R = Et). As expected, analogs with a thionate linkage (PS) were poor inhibitors of the AChEs.  相似文献   

20.
A study was conducted to understand the potential of Landsat-8 in the estimation of gross primary production (GPP) and to quantify the productivity of maize crop cultivated under hyper-arid conditions of Saudi Arabia. The GPP of maize crop was estimated by using the Vegetation Photosynthesis Model (VPM) utilizing remote sensing data from Landsat-8 reflectance (GPPVPM) as well as the meteorological data provided by Eddy Covariance (EC) system (GPPEC), for the period from August to November 2015. Results revealed that the cumulative GPPEC for the entire growth period of maize crop was 1871 g C m−2. However, the cumulative GPP determined as a function of the enhanced vegetation index – EVI (GPPEVI) was 1979 g C m−2, and that determined as a function of the normalized difference vegetation index – NDVI (GPPNDVI) was 1754 g C m−2. These results indicated that the GPPEVI was significantly higher than the GPPEC (R2 = 0.96, P = 0.0241 and RMSE = 12.6%). While, the GPPNDVI was significantly lower than the GPPEC (R2 = 0.93, P = 0.0384 and RMSE = 19.7%). However, the recorded relative error between the GPPEC and both the GPPEVI and the GPPNDVI was −6.22% and 5.76%, respectively. These results demonstrated the potential of the landsat-8 driven VPM model for the estimation of GPP, which is relevant to the productivity and carbon fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号