首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1–42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1–42 aggregation. The compound 3o exhibited best AChE (IC50 = 0.037 μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

2.
In vivo imaging of β-amyloid (Aβ) aggregates consisting of Aβ(1–40) and Aβ(1–42) peptides by positron emission tomography (PET) contributes to the diagnosis and therapy for Alzheimer’s disease (AD). Because 64Cu (t1/2 = 12.7 h) is a radionuclide for PET with a longer physical half-life than 11C (t1/2 = 20 min) and 18F (t1/2 = 110 min), it is an attractive radionuclide for the development of Aβ imaging probes that are suitable for routine use. In the present study, we designed and synthesized two novel 64Cu labeled benzofuran derivatives and evaluated their utility as PET imaging probes for Aβ aggregates. In an in vitro binding assay, 6 and 8 showed binding affinity for Aβ(1–42) aggregates with a Ki value of 33 and 243 nM, respectively. In addition, these probes bound to Aβ plaques deposited in the brain of an AD model mouse in vitro. In a biodistribution experiment using normal mice, these probes showed low brain uptake (0.33% and 0.36% ID/g) at 2 min post-injection. Although refinement to enhance brain uptake is needed, [64Cu]6 and [64Cu]8 demonstrated the feasibility of developing novel PET probes for imaging Aβ aggregates.  相似文献   

3.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

4.
In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer’s disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer’s disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC50: 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents).  相似文献   

5.
A novel series of benzylisoquinoline derivatives were designed, synthesized, and evaluated as multifunctional agents against Alzheimer’s disease (AD). The screening results showed that most of the compounds significantly inhibited cholinesterases (ChEs), human cholinesterases (h-ChEs) and self-induced β-amyloid (Aβ) aggregation. In particular, compound 9k showed the strongest acetylcholinesterase (AChE) inhibitory activity, being 1000-fold and 3-fold more potent than its precursor benzylisoquinoline (10) and the positive control galanthamine, respectively. In addition, 9k was a moderately potent inhibitor for h-ChEs. Compared with precursor benzylisoquinoline (36.0% at 20 μМ), 9k (78.4% at 20 μМ) could further inhibit Aβ aggregation. Moreover, 9k showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Therefore, compound 9k might be a promising lead compound for AD treatment.  相似文献   

6.
The SβC gene is conditionally expressed a 99-residue carboxy terminal fragment, C99, of amyloid precursor protein in MC65 cells and causes cell death. Consequently, MC65 cell line was used to identify inhibitors of toxicity related to intracellular amyloid β (Aβ) oligomers. Compounds that reduce the level of Aβ peptides, prevent Aβ aggregation, or eliminate existing Aβ aggregates may be used in the treatment of Alzheimer’s disease (AD). Previously, we found that a tricyclic pyrone (TP) molecule, compound 1, prevents MC65 cell death and inhibits Aβ aggregation. Hence various TPs containing heterocycle at C7 side chain and a nitrogen at position 2 or 5 were synthesized and their MC65 cell protective activities evaluated. TPs containing N3′-adenine moiety such as compounds 1 and 11 are most active with EC50 values of 0.31 and 0.35 μM, respectively. EC50 values of tricyclic N5-analog, pyranoisoquinolinone 13, and N2-analog, pyranopyridinone 20, are 2.49 and 1.25 μM, respectively, despite the lack of adenine moiety. Further investigation of tricyclic N2- and N5-analogs is warranted.  相似文献   

7.
A series of novel multipotent 2-piperidone derivatives were designed, synthesized and biologically evaluated as chemical agents for the treatment of Alzheimer’s disease (AD). The results showed that most of the target compounds displayed significant potency to inhibit Aβ1–42 self-aggregation. Among them, compound 7q exhibited the best inhibition of Aβ1–42 self-aggregation (59.11% at 20 μM) in a concentration-dependent manner. Additionally, the compounds 6b, 7p and 7q as representatives were found to present anti-inflammation properties in lipopolysaccharide (LPS)-induced microglial BV-2 cells. They could effectively suppress the production of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6. Meanwhile, compound 7q could prevent the neuronal cell SH-SY5Y death by LPS-stimulated microglia cell activation mediated neurotoxicity. The molecular modeling studies demonstrated that compounds matched the pharmacophore well and had good predicted physicochemical properties and estimated IC50 values. Moreover, compound 7q exerted a good binding to the active site of myeloid differentiation factor 88 (MyD88) through the docking analysis and could interfere with its homodimerization or heterodimerization. Consequently, these compounds emerged as promising candidates for further development of novel multifunctional agents for AD treatment.  相似文献   

8.
We report radioiodinated chalcone derivatives as new SPECT imaging probes for amyloid β (Aβ) plaques. The monoethyleneoxy derivative 2 and allyloxy derivative 8 showed a high affinity for Aβ(1–42) aggregates with Ki values of 24 and 4.5 nM, respectively. Fluorescent imaging demonstrated that 2 and 8 clearly stained thioflavin-S positive Aβ plaques in the brain sections of Tg2576 transgenic mice. In vitro autoradiography revealed that [125I]2 displayed no clear accumulation toward Aβ plaques in the brain sections of Tg2576 mice, whereas the accumulation pattern of [125I]8 matched with the presence of Aβ plaques both in the brain sections of Tg2576 mice and an AD patient. In biodistribution studies using normal mice, [125I]2 showed preferable in vivo pharmacokinetics (4.82%ID/g at 2 min and 0.45%ID/g at 60 min), while [125I]8 showed only a modest brain uptake (1.62%ID/g at 2 min) with slow clearance (0.56%ID/g at 60 min). [125I]8 showed prospective binding properties for Aβ plaques, although further structural modifications are needed to improve the blood brain barrier permeability and washout from brain.  相似文献   

9.
A group of novel 4,5-dianilinophthalimide derivatives has been synthesized in this study for potential use as β-amyloid (Aβ) plaque probes. Staining of hippocampus tissue sections from Alzheimer’s disease (AD) brain with the representative compound 9 indicated selective labeling of it to Aβ plaques. The binding affinity of radioiodinated [125I]9 for AD brain homogenates was 0.21 nM (Kd), and of other derivatives ranged from 0.9 to 19.7 nM, except for N-methyl-4,5-dianilinophthalimide (Ki > 1000 nM). [125I]9 possessed the optimal lipophilicity with Log P value of 2.16, and its in vivo biodistribution in normal mice exhibited excellent initial brain uptake (5.16% ID/g at 2 min after injection) and a fast washout rate (0.56% ID/g at 60 min). The encouraging results suggest that this novel derivative of [123I]9 may have potential as an in vivo SPECT probe for detecting amyloid plaques in the brain.  相似文献   

10.
Accumulation of beta-amyloid (Aβ), produced by the proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretase, is widely believed to be associated with Alzheimer’s disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) γ-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-β,β-diethylalaninol 7.b.2 (Aβ 40/42 EC50 = 28 nM), which is efficacious in reduction of Aβ production in vivo.  相似文献   

11.
Two hallmarks of Alzheimer’s disease (AD) observed in the brains of patients with the disease include oxidative injury and deposition of protein aggregates comprised of amyloid-β (Aβ) variants. To inhibit these toxic processes, we synthesized antioxidant-conjugated peptides comprised of Trolox and various C-terminal motifs of Aβ variants, TxAβxn (x = 34, 36, 38, 40; n = 40, 42, 43). Most of these compounds were found to exhibit anti-aggregation activities. Among them, TxAβ36–42 significantly inhibited Aβ1–42 aggregation, showed potent antioxidant activity, and protected SH-SY5Y cells from Aβ1–42-induced cytotoxicity. Thus, this method represents a promising strategy for developing multifunctional AD therapeutic agents.  相似文献   

12.
3-[18F]Fluoro-2-hydroxypropyl substituted compounds were synthesized and evaluated as novel 18F-labeled PET tracers for imaging Aβ plaque in a living brain. All compounds exhibited high binding affinities toward the synthetic Aβ1–42 aggregate and/or Alzheimer’s disease brain homogenate. In the microPET study with normal mice, the 3-[18F]fluoro-2-hydroxypropyl substituted compounds resulted in fast brain washout by reducing the lipophilicities of the compounds. Intriguingly, (S)-configured PET tracers, (S)-[18F]1b and (S)-[18F]1c, exhibited a 2.8 and 4.0-fold faster brain washout rate at a peak/30 min in the mouse brain than the corresponding (R)-configured PET tracers despite there being no meaningful difference in binding affinities toward Aβ plaque. A further evaluation of (S)-[18F]1c with healthy rhesus monkeys also revealed excellent clearance from the frontal cortex with ratios of 7.0, 16.0, 30.0 and 49.0 at a peak/30, 60, 90, and 120 min, respectively. These results suggest that (S)-[18F]1c may be a potential PET tracer for imaging Aβ plaque in a living brain.  相似文献   

13.
BackgroundAlzheimer's disease (AD) is a progressive neurodegenerative brain disorder that is characterized by dementia, cognitive impairment, and memory loss. Diverse factors are related to the development of AD, such as increased level of β-amyloid (Aβ), acetylcholine, metal ion deregulation, hyperphosphorylated tau protein, and oxidative stress.MethodsThe following methods were used: organic syntheses of 1H-phenanthro[9,10-d]imidazole derivatives, inhibition of self-mediated and metal-induced Aβ1–42 aggregation, inhibition studies for acetylcholinesterase and butyrylcholinesterase, anti-oxidation activity studies, CD, MTT assay, transmission electron microscopy, dot plot assay, gel electrophoresis, Western blot, and molecular docking studies.ResultsWe synthesized and characterized a new type of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for AD treatment. Our results showed that most of these derivatives exhibited strong Aβ aggregation inhibitory activity. Compound 9g had 74% Aβ1–42 aggregation inhibitory effect at 10 μM concentration with its IC50 value of 6.5 μM for self-induced Aβ1–42 aggregation. This compound also showed good inhibition of metal-mediated (Cu2 + and Fe2 +) and acetylcholinesterase-induced Aβ1–42 aggregation, as indicated by using thioflavin T assay, transmission electron microscopy, gel electrophoresis, and Western blot. Besides, compound 9g exhibited cholinesterase inhibitory activity, with its IC50 values of 0.86 μM and 0.51 μM for acetylcholinesterase and butyrylcholinesterase, respectively. In addition, compound 9g showed good anti-oxidation effect with oxygen radical absorbance capacity (ORAC) value of 2.29.ConclusionsCompound 9g was found to be a potent multi-target-directed agent for Alzheimer's disease.General significanceCompound 9g could become a lead compound for further development as a multi-target-directed agent for AD treatment.  相似文献   

14.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

15.
In this study, six novel benzothiazole derivatives based on the bithiophene structure were developed as potential β-amyloid probes. In vitro binding studies using Aβ aggregates showed that all of them demonstrated high binding affinities with Ki values ranged from 0.11 to 4.64 nM. In vitro fluorescent staining results showed that these compounds can intensely stained Aβ plaques within brain sections of APP/PS1 transgenic mice, animal model for AD. Two radioiodinated compounds [125I]-2-(5′-iodo-2,2′-bithiophen-5-yl)-6-methoxybenzo[d]thiazole [125I]10 and [125I]-2-(2,2′-bithiophen-5-yl)-6-iodobenzo[d]thiazole [125I]13 were successfully prepared through an iododestannylation reaction. Furthermore, in vitro autoradiography of the AD model mice brain sections showed that both [125I]10 and [125I]13 labeled the Aβ plaques specifically with low background. In vivo biodistribution studies in normal mice indicated that [125I]13 exhibited high brain uptake (3.42% ID/g at 2 min) and rapid clearance from the brain (0.53% ID/g at 60 min), while [125I]10 showed lower brain uptake (0.87% ID/g at 2 min). In conclusion, these preliminary results of this study suggest that the novel radioiodinated benzothiazole derivative [125I]13 may be a candidate as an in vivo imaging agent for detecting β-amyloid plaques in the brain of AD patients.  相似文献   

16.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

17.
Since the imaging of β-amyloid (Aβ) plaques in the brain is believed to be a useful tool for the early diagnosis of Alzheimer’s disease (AD), a number of imaging probes to detect Aβ plaques have been developed. Because the radionuclide 68Ga (t1/2 = 68 min) for PET imaging could become an attractive alternative to 11C and 18F, we designed and synthesized a benzofuran derivative conjugated with a 68Ga complex (68Ga-DOTA-C3-BF) as a novel Aβ imaging probe. In an in vitro binding assay, Ga-DOTA-C3-BF showed high affinity for Aβ(1-42) aggregates (Ki = 10.8 nM). The Ga-DOTA-C3-BF clearly stained Aβ plaques in a section of Tg2576 mouse, reflecting the affinity for Aβ(1-42) aggregates in vitro. In a biodistribution study in normal mice, 68Ga-DOTA-C3-BF displayed low initial uptake (0.45% ID/g) in the brain at 2 min post-injection. While improvement of the brain uptake of 68Ga complexes appears to be essential, these results suggest that novel PET imaging probes that include 68Ga as the radionuclide for PET may be feasible.  相似文献   

18.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

19.
Alzheimer’s disease (AD) is the most common form of dementia affecting more than 28 million people in the world. Only symptomatic treatments are currently available. Anticipated tri-fold increase of AD incidence in the next 50 years has established the need to explore new possible treatments. Accumulation of extracellular amyloid-β (Aβ) plaques, intracellular tangles in the brain, and formation of reactive oxygen species (ROS) are the major hallmarks of the disease. The active role of some metal ions, especially Cu2+, in promoting both Aβ aggregation and reactive oxygen species formation has rendered ionophoric drugs as a promising treatment strategy. In this work, a series of 5 disease-modifying and multi-target ionophoric polyphenols (15), inspired on the structure of natural resveratrol, have been synthesized and characterized. All compounds bind Cu2+ selectively over other biologically relevant metal ions. They form 2:1 (compound/Cu2+) complexes with association constants log Ka 12–14 depending on the molecular design. Our results indicate that compounds 15 possess excellent antioxidant properties: they inhibit the Cu2+-catalyzed reactive oxygen species production between 47% and 100%, and they scavenge DPPH (1,1-diphenyl-2-picryl-hydrazyl) and AAPH (2,2′-azobis(2-amindino-propane)dihydrochloride) free radicals in general better than clioquinol, resveratrol and ascorbic acid. In addition, compounds 15 interact with Aβ peptides and inhibit both the Cu2+-catalyzed aggregation and the self-assembly of Aβ(1–40) up to a ∼92% extent. Interestingly, 15 are also able to disaggregate up to ∼91% of pre-formed Aβ(1–40) aggregates. Furthermore, cytotoxic studies show remarkably low toxicity of 15 toward Tetrahymena thermophila with LD50 values higher than 150 μM, comparable to non-toxic natural resveratrol.  相似文献   

20.
Two new oleanane-type triterpene saponins, identified as 16α-hydroxy-22-O-angeloyl-23-formyl-28,31-dihydroxymethylene-olean-12-ene-3β-O-{β-d-galactopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B1, 1) and 22-O-hydrocinnamoyl-23-formyl-28-dihydroxymethylene-olean-12-ene-3β-O-{β-d-glucopyranosyl-(1  2)[β-d-xylopyranosyl-(1  2)-α-l-arabinopyranosyl(1  3)]-β-d-glucopyranosiduronic acid} (oleiferasaponin B2, 2), were isolated from the seed cake of Camellia oleifera Abel. Their structures were established by extensive 1D- and 2D-NMR experiments along with TOF-MS analysis and acid hydrolysis. The cytotoxicity of the isolated compounds was evaluated in four human carcinoma cell lines: A 549, SK-OV-3, SK-MEL-2 and HCT15. Both compounds 1 and 2 exhibited significantly cytotoxic activity with IC50 values of 18.5 μM (A549), 11.3 μM (SK-OV-3), 13.9 μM (SK-MEL-2) and 1.6 μM (HCT15) for 1 and IC50 values of 8.4 μM (A549), 6.3 μM (SK-OV-3), 9.2 μM (SK-MEL-2) and 0.8 μM (HCT15) for 2. In addition, compound 2 showed more effective cytotoxic activity than compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号