共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Caccuri AM Antonini G Allocati N Di Ilio C De Maria F Innocenti F Parker MW Masulli M Lo Bello M Turella P Federici G Ricci G 《The Journal of biological chemistry》2002,277(21):18777-18784
The native form of the bacterial glutathione transferase B1-1 (EC ) is characterized by one glutathione (GSH) molecule covalently linked to Cys-10. This peculiar disulfide, only found in the Beta and Omega class glutathione S-transferases (GSTs) but absent in all other GSTs, prompts questions about its role and how GSH can be activated and utilized in the reaction normally performed by GSTs. Stopped-flow and spectroscopic experiments suggest that, in the native enzyme (GSTB1-1ox), a second GSH molecule is present, albeit transiently, in the active site. This second GSH binds to the enzyme through a bimolecular interaction followed by a fast thiol-disulfide exchange with the covalently bound GSH. The apparent pK(a) of the non-covalently bound GSH is lowered from 9.0 to 6.4 +/- 0.2 in similar fashion to other GSTs. The reduced form of GSTB1-1 (GSTB1-1red) binds GSH 100-fold faster and also induces a more active deprotonation of the substrate with an apparent pK(a) of 5.2 +/- 0.1. Apparently, the absence of the mixed disulfide does not affect k(cat) and K(m) values in the GST conjugation activity, which is rate-limited by the chemical step both in GSTB1-1red and in GSTB1-1ox. However, GSTB1-1ox follows a steady-state random sequential mechanism whereas a rapid-equilibrium random sequential mechanism is adopted by GSTB1-1red. Remarkably, GSTB1-1ox and GSTB1-1red are equally able to catalyze a glutaredoxin-like catalysis using cysteine S-sulfate and hydroxyethyl disulfide as substrates. Cys-10 is an essential residue in this redox activity, and its replacement by alanine abolishes this enzymatic activity completely. It appears that GSTB1-1 behaves like an "intermediate enzyme" between the thiol-disulfide oxidoreductase and the GST superfamilies. 相似文献
3.
PTP1B: from the sidelines to the front lines! 总被引:13,自引:0,他引:13
Tonks NK 《FEBS letters》2003,546(1):140-148
Although initially viewed as housekeeping enzymes, research over the last 15 years has revealed that the protein tyrosine phosphatases (PTPs) are critical regulators of tyrosine phosphorylation-dependent signaling events and may represent novel targets for therapeutic intervention in a variety of human diseases. In this review I will describe some of the key advances in the characterization of the structure, regulation and function of the prototypic PTP, PTP1B, and illustrate how our understanding of the properties of this enzyme has revealed principles that apply to the PTP family as a whole. 相似文献
4.
5.
The C-terminus of Protein Tyrosine Phosphatase 1B (PTP1B) includes an α-helix α7), which forms an allosteric binding site 20 ? away from the active site. This helix is specific to PTP1B and its truncation decreases the catalytic activity significantly. Here, molecular dynamics (MD) simulations in the presence and absence of α7 were performed to investigate the role played by α7. The highly mobile α7 was found to maintain its contacts with loop 11 (L11)α3 helix throughout the simulations. The interactions of Tyr152 on L11, Tyr176, Thr177 on the catalytically important WPD loop and Ser190 on α3 are important for the conformational stability and the concerted motions of the regions surrounding the WPD loop. In the absence of α7, L11 and WPD loop move away from their crystal structure conformations, resulting in the loss of the interactions in this region, and a decrease in the residue displacement correlations in the vicinity of WPD loop. Therefore, we suggest that one of the functionally important roles of α7 may be to limit the L11 and α3 motions, and, facilitate the WPD loop motions. Truncation of α7 in PTP1B is found to affect distant regions as well, such as the substrate recognition site and the phosphate binding-loop (P-loop), changing the conformations of these regions significantly. Our results show that the PTP1B specific α7 is important for the conformation and dynamics of the WPD loop, and also may play a role in ligand binding. 相似文献
6.
HIV-1 is restricted in macrophages and certain quiescent myeloid cells due to a “Scorched Earth” dNTP starvation strategy attributed to the sterile alpha motif and HD domain protein—SAMHD1. Active SAMHD1 tetramers are assembled by GTP-Mg+2-dNTP cross bridges and cleave the triphosphate groups of dNTPs at a K m of ~10 μM, which is consistent with dNTP concentrations in cycling cells, but far higher than the equivalent concentration in quiescent cells. Given the substantial disparity between the dNTP concentrations required to activate SAMHD1 tetramers (~10 μM) and the dNTP concentrations in noncycling cells (~10 nM), the possibility of alternate enzymatically active forms of SAMHD1, including monomers remains open. In particular, the possibility of redox regulation of such monomers is also an open question. There have been experimental studies on the regulation of SAMHD1 by Glutathione driven redox reactions recently. Therefore, in this work, we have performed all-atom molecular dynamics simulations to study the dynamics of monomeric SAMHD1 constructs in the context of the three redox-susceptible Cysteine residues and compared them to monomers assembled within a tetramer. Our results indicate that assembly into a tetramer causes ordering of the catalytic core and increased solvent accessibility of the Catalytic Site. We have also found that glutathionylation of surface exposed C522 causes long range allosteric disruptions extending into the protein core. Finally, we see evidence suggesting a transient interaction between C522 and C341. Such a disulfide linkage has been hypothesized by experimental models, but has never been observed in crystal structures before. 相似文献
7.
Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein.
To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivo by non-invasive fluorimetric measurements. The 1.5 A crystal structure of the oxidized protein revealed a disulfide bond-induced distortion of the beta-barrel, as well as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway. 相似文献
8.
Activated phagocytic cells generate hypochlorite (HOCl) via release of hydrogen peroxide and the enzyme myeloperoxidase. HOCl plays an important role in bacterial cell killing, but excessive or misplaced production of HOCl is also known to cause tissue damage. Studies have shown that low-molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation of thiols with HOCl appears to compete with non-radical reactions. The circumstances under which radical formation may be important are discussed. 相似文献
9.
P G Través V Pardo M Pimentel-Santillana á González-Rodríguez M Mojena D Rico Y Montenegro C Calés P Martín-Sanz A M Valverde L Boscá 《Cell death & disease》2014,5(3):e1125
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability. 相似文献
10.
11.
Control of ALK (wild type and mutated forms) phosphorylation: Specific role of the phosphatase PTP1B
M.C. Boutterin P. Mazot C. Faure S. Doly N. Gervasi M.L. Tremblay M. Vigny 《Cellular signalling》2013,25(6):1505-1513
Phosphorylation of proteins on tyrosine residues is regulated by the activities of protein tyrosine kinases and protein tyrosine phosphatases. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) essentially and transiently expressed during development of the central and peripheral nervous systems. ALK has been identified as a major neuroblastoma predisposition gene and activating mutations have been identified in a subset of sporadic neuroblastoma tumors. We previously established that the mutated receptors were essentially retained in the endoplasmic reticulum/Golgi compartments due to their constitutive activity. Intriguingly we demonstrated a stronger phosphorylation for the minor pool of receptor addressed to the plasma membrane. We decided to investigate the potential involvement of tyrosine phosphatase in dephosphorylation of this intracellular pool. In this study we first showed that general inhibition of tyrosine phosphatases resulted in a dramatic increase of the tyrosine phosphorylation of the wild type but also of the mutated receptors. This increase not only required the intrinsic kinase activity of the ALK receptor but also involved the Src tyrosine kinase family. Second we provided strong evidences that the endoplasmic reticulum associated phosphatase PTP1B is key player in the control of ALK phosphorylation. Our data shed a new light on the biological significance of the basal phosphorylation levels of both wild type and mutated ALK receptors and could be essential to further understand their roles in malignancies. 相似文献
12.
The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism 总被引:1,自引:0,他引:1
Zinc is essential to the catalytic activity of angiotensin converting enzyme. The enzyme contains one g-atom of zinc per mole of protein. Chelating agents abolish activity by removing the metal ion to yield the inactive, metal-free apoenzyme. Zinc does not stabilize protein structure since the native and apoenzymes are equally susceptible to heat denaturation. Addition of either Zn2+, Co2+, or Mn2+ to the apoenzyme generates an active metalloenzyme; Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ fail to restore activity. The activities of the metalloenzymes follow the order Zn greater than Co greater than Mn. The protein binds Zn2+ more firmly than it does Co2+ or Mn2+. Hydrolysis of the chromophoric substrate, furanacryloyl-Phe-Gly-Gly, by the active metalloenzymes is subject to chloride activation; the activation constant is not metal dependent. Metal replacement mainly affects Kcat with very little change in Km, indicating that the role of zinc is to catalyze peptide hydrolysis. 相似文献
13.
Lin-Fu Liang Li-Xin Gao Jia Li Orazio Taglialatela-Scafati Yue-Wei Guo 《Bioorganic & medicinal chemistry》2013,21(17):5076-5080
A detailed investigation of the South China Sea soft coral Sarcophyton trocheliophorum Marenzeller yielded, along with six known terpenes (6?11), the new sarcophytonolides N?R (1?5), whose structures have been elucidated by detailed spectroscopic analysis. Sarcophytonolides N–R are mono- or bicyclic cembranoids characterized by the presence of three/four double bonds and oxidized methyl groups. Some of the isolated compounds showed significant inhibitory activity against human protein tyrosine phosphatase 1B (PTP1B) enzyme, a key target for the treatment of type-II diabetes and obesity, and some preliminary structure–activity relationships have been drawn. This is the first report on the anti-PTP1B activity of cembrane diterpenoids. 相似文献
14.
Wang G Strang C Pfaffinger PJ Covarrubias M 《The Journal of biological chemistry》2007,282(18):13637-13647
The thiol-based redox regulation of proteins plays a central role in cellular signaling. Here, we investigated the redox regulation at the Zn(2+) binding site (HX(5)CX(20)CC) in the intracellular T1-T1 inter-subunit interface of a Kv4 channel. This site undergoes conformational changes coupled to voltage-dependent gating, which may be sensitive to oxidative stress. The main results show that internally applied nitric oxide (NO) inhibits channel activity profoundly. This inhibition is reversed by reduced glutathione and suppressed by intracellular Zn(2+), and at least two Zn(2+) site cysteines are required to observe the NO-induced inhibition (Cys-110 from one subunit and Cys-132 from the neighboring subunit). Biochemical evidence suggests strongly that NO induces a disulfide bridge between Cys-110 and Cys-132 in intact cells. Finally, further mutational studies suggest that intra-subunit Zn(2+) coordination involving His-104, Cys-131, and Cys-132 protects against the formation of the inhibitory disulfide bond. We propose that the interfacial T1 Zn(2+) site of Kv4 channels acts as a Zn(2+)-dependent redox switch that may regulate the activity of neuronal and cardiac A-type K(+) currents under physiological and pathological conditions. 相似文献
15.
Holmes CP Li X Pan Y Xu C Bhandari A Moody CM Miguel JA Ferla SW De Francisco MN Frederick BT Zhou S Macher N Jang L Irvine JD Grove JR 《Bioorganic & medicinal chemistry letters》2008,18(8):2719-2724
We have synthesized and evaluated a series of triaryl sulfonamide-based PTP1B inhibitors in which a difluoro-methylenephosphonate group of a potent lead has been replaced by potential bioisosteric replacements. Several mono- or di-charged compounds (8a, 8b, and 15a) were shown exhibit inhibitory activity in the low micromolar range, demonstrating the feasibility of using this approach in identifying non-phosphonate pTyr mimetics in a small molecular scaffold. These results also provide a useful indication of the relative effectiveness of these pTyr mimetics. 相似文献
16.
Ni W Ji J Dai Z Papp A Johnson AJ Ahn S Farley KL Lin TS Dalton JT Li X Jarjoura D Byrd JC Sadee W Grever MR Phelps MA 《PloS one》2010,5(11):e13792
Background
Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy.Methodology/Principal Findings
Thirty-five patients who received single-agent flavopiridol via the PK-directed schedule were genotyped for 189 polymorphisms in genes encoding 56 drug metabolizing enzymes and transporters. Genotypes were evaluated in univariate and multivariate analyses as covariates in a population PK model. Transport of flavopiridol and its glucuronide metabolite was evaluated in uptake assays in HEK-293 and MDCK-II cells transiently transfected with SLCO1B1. Polymorphisms in ABCC2, ABCG2, UGT1A1, UGT1A9, and SLCO1B1 were found to significantly correlate with flavopiridol PK in univariate analysis. Transport assay results indicated both flavopiridol and flavopiridol-glucuronide are substrates of the SLCO1B1/OATP1B1 transporter. Covariates incorporated into the final population PK model included bilirubin, SLCO1B1 rs11045819 and ABCC2 rs8187710. Associations were also observed between genotype and response. To validate these findings, a second set of data with 51 patients was evaluated, and overall trends for associations between PK and PGx were found to be consistent.Conclusions/Significance
Polymorphisms in transport genes were found to be associated with flavopiridol disposition and outcomes. Observed clinical associations with SLCO1B1 were functionally validated indicating for the first time its relevance as a transporter of flavopiridol and its glucuronide metabolite. A second 51-patient dataset indicated similar trends between genotype in the SLCO1B1 and other candidate genes, thus providing support for these findings. Further study in larger patient populations will be necessary to fully characterize and validate the clinical impact of polymorphisms in SLCO1B1 and other transporter and metabolizing enzyme genes on outcomes from flavopiridol therapy. 相似文献17.
18.
Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure 总被引:10,自引:0,他引:10
Shen K Keng YF Wu L Guo XL Lawrence DS Zhang ZY 《The Journal of biological chemistry》2001,276(50):47311-47319
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. Thus, there is intense interest in obtaining specific and potent PTPase inhibitors for biological studies and pharmacological development. However, given the highly conserved nature of the PTPase active site, it is unclear whether selectivity in PTPase inhibition can be achieved. We describe a combinatorial approach that is designed to target both the active site and a unique peripheral site in PTP1B. Compounds that can simultaneously associate with both sites are expected to exhibit enhanced affinity and specificity. We also describe a novel affinity-based high-throughput assay procedure that can be used for PTPase inhibitor screening. The combinatorial library/high-throughput screen protocols furnished a small molecule PTP1B inhibitor that is both potent (K(i) = 2.4 nm) and selective (little or no activity against a panel of phosphatases including Yersinia PTPase, SHP1, SHP2, LAR, HePTP, PTPalpha, CD45, VHR, MKP3, Cdc25A, Stp1, and PP2C). These results demonstrate that it is possible to acquire potent, yet highly selective inhibitors for individual members of the large PTPase family of enzymes. 相似文献
19.
We reported previously that the disappearance of cyclin B at the end of mitosis in early Drosophila embryos starts at centrosomes and spreads into the spindle [1]. Here, we used a novel mutation, centrosome fall off (cfo), to investigate whether centrosomes are required to initiate the disappearance of cyclin B from the spindle. In embryos laid by homozygous cfo mutant mothers, the centrosomes co-ordinately detached from the mitotic spindle during mitosis, and the centrosomeless spindles arrested at anaphase. Cyclin B levels decreased on the detached centrosomes, but not on the arrested centrosomeless spindles, presumably explaining why the spindles arrest in anaphase in these embryos. We found that the expression of a non-degradable cyclin B in embryos also caused an anaphase arrest, but most centrosomes remained attached to the arrested spindles, and non-degradable cyclin B levels remained high on both the centrosomes and spindles. These findings suggest that the disappearance of cyclin B from centrosomes and spindles is closely linked to its destruction, and that a connection between centrosomes and spindles is required for the proper destruction of the spindle-associated cyclin B in early Drosophila embryos. These results may have important implications for the mechanism of the spindle-assembly checkpoint, as they suggest that unattached kinetochores may arrest cells in mitosis, at least in part, by signalling to centrosomes to block the initiation of cyclin B destruction. 相似文献
20.
Glioblastoma multiforme is a common primary brain tumor in adults and one of the most devastating human cancers. Reactive oxygen species (ROS) generated by NADPH oxidase (Nox) 4 have recently been a focus of attention in the study of glioblastomas, but the molecular mechanisms underlying the actions of Nox4 remain elusive. In this study, we demonstrated that silencing of Nox4 expression by Nox4-targeted siRNA suppressed cell growth and motility of glioblastoma U87 cells, indicating the involvement of Nox4. Furthermore, Nox4-derived ROS oxidized and inactivated protein tyrosine phosphatase (PTP):1B: PTP1B in its active form downregulates cell proliferation and migration. By affinity purification with the substrate-trapping mutant of PTP1B, tyrosine-phosphorylated coronin-1C was identified as a substrate of PTP1B. Its tyrosine phosphorylation level was suppressed by Nox4 inhibition, suggesting that tyrosine phosphorylation of coronin-1C is regulated by the Nox4–PTP1B pathway. Finally, ablation of coronin-1C attenuated the proliferative and migratory activity of the cells. Collectively, these findings reveal that Nox4-mediated redox regulation of PTP1B serves as a modulator, in part through coronin-1C, of the growth and migration of glioblastoma cells, and provide new insight into the mechanistic aspect of glioblastoma malignancy. 相似文献