首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the natural schweinfurthins are potent and selective inhibitors of cell growth as measured by the National Cancer Institute’s 60-cell line screen. Due to the limited supply of these natural products, we have initiated a program aimed at their synthesis. To date, this effort has led to the preparation of three natural schweinfurthins and more than 40 analogues, and assays on these compounds have afforded some understanding of structure–activity relationships in this family. Further development of schweinfurthins as chemotherapeutic agents would benefit from characterization of their mechanism(s) of action. This perspective led to development of a fluorescent schweinfurthin analogue that retains the differential activity of the natural products, and yet has properties that facilitate its visualization within cells.  相似文献   

2.
As part of a program to explore the biological activity of analogues of the natural schweinfurthins, a set of compounds has been prepared where an indole system can be viewed as a substitution for the resorcinol substructure of the schweinfurthin’s D-ring. Twelve of these schweinfurthin indoles have been prepared and evaluated in the 60 cell line screen of the National Cancer Institute. While a range of activity has been observed, it is now clear that schweinfurthin indoles can demonstrate the intriguing pattern of activity associated with the natural stilbenes. In the best cases, these indole analogues display both potency and differential activity across the various cell lines comparable to the best resorcinol analogues.  相似文献   

3.
The schweinfurthins are an intriguing group of anti-proliferative agents that display low nanomolar activities against several cell types, including the human-derived glioblastoma cell line SF-295, but have little impact on other cell lines even at micromolar concentrations. This activity has inspired the synthesis of seven of the natural schweinfurthins, all with the correct absolute stereochemistry, and a variety of analogues designed to probe different facets of the pharmacophore. Reported herein is the synthesis of several new schweinfurthin analogues varied at the C-5 position along with data on their biological activity in the NCI 60 cell-line assay.  相似文献   

4.
The natural tetracyclic schweinfurthins are potent and selective inhibitors of cell growth in the National Cancer Institute’s 60-cell line screen. An interest in determination of their cellular or molecular target has inspired our efforts to prepare both the natural products and analogues. In this paper, chemical synthesis of analogues modified in different olefinic positions, and preliminary results from studies of their biological activity, are reported.  相似文献   

5.
As a prelude to efforts to identify schweinfurthin binding proteins, an ester conjugate and an amide conjugate of schweinfurthin F and biotin have been prepared by chemical synthesis. These compounds maintain activity in SF-295 cells comparable to the parent system, and display the lower potency in A549 cells that is a characteristic of the schweinfurthin pattern of activity.  相似文献   

6.
The synthesis and biological evaluation of several enantioenriched schweinfurthin B analogs were undertaken to develop structure-activity relationships and guide design of probes for their putative molecular target. The desired stilbenes contain a common left-half hexahydroxanthene ring system and an aromatic right-half with varied substituents. The synthesis involves penultimate Horner-Wadsworth-Emmons coupling of one of several right-half phosphonates with the aldehyde comprising the left-half of 3-deoxyschweinfurthin B. Preparation of the requisite phosphonates, and the respective stilbenes, as well as the cytotoxicity profiles of these new compounds in the National Cancer Institute's 60 cell-line anticancer screen is described. Several of these analogs displayed cytotoxicity patterns well-correlated with the natural product and differences in activity of approximately 10(3) across the various cell lines. Together, these assay results indicate the importance of at least one free phenol group on the aromatic D-ring of this system for differential cytotoxicity.  相似文献   

7.
The isoquinuclidine (2-azabicyclo[2.2.2]octane) ring system may be viewed as a semi-rigid boat form of the piperidine ring and, when properly substituted, a scaffold for rigid analogs of biologically active ethanolamines and propanolamines. It is present in natural products (such as ibogaine and dioscorine) that display interesting pharmacological properties. In this study, we have expanded our continuing efforts to incorporate this ring system in numerous pharmacophores, by designing and synthesizing semirigid analogs of the antimalarial drug chloroquine. The analogs were tested in vitro against Plasmodium falciparum strains and Leishmania donovani promastigote cultures. Compounds 6 and 13 displayed potent antimalarial activity against both chloroquine-susceptible D6 and the -resistant W2 strains of P. falciparum. All analogs also demonstrated significant antileishmanial activity with compounds 6 and 13 again being the most potent. The fact that these compounds are active against both chloroquine-resistant and chloroquine-sensitive strains as well as leishmanial cells makes them promising candidates for drug development.  相似文献   

8.
This paper describes the synthesis and biological evaluation of a series of straight chain analogs of a compound (1) that was previously synthesized in our research program. These compounds, which are T-type calcium channel antagonists, exhibits potent anti-proliferative activity against a variety of cancer cells. A structure-activity relationship of these analogs against a variety of cancer cells has provided insight into a logical pharmacophore for this series of compounds. Furthermore, this series of compounds has presented itself as a set of novel, concentration dependent, dual action agonists/antagonists for the T-type calcium channel.  相似文献   

9.
We previously reported the identification and development of novel inhibitors of streptokinase (SK) expression by Group A Streptococcus (GAS), originating from a high throughput cell-based phenotypic screen. Although phenotypic screening is well-suited to identifying compounds that exert desired biological effects in potentially novel ways, it requires follow-up experiments to determine the macromolecular target(s) of active compounds. We therefore designed and synthesized several classes of chemical probes for target identification studies, guided by previously established structure–activity relationships. The probes were designed to first irreversibly photolabel target proteins in the intact bacteria, followed by cell lysis and click ligation with fluorescent tags to allow for visualization on SDS–PAGE gels. This stepwise, ‘tag-free’ approach allows for a significant reduction in molecular weight and polar surface area compared to full-length fluorescent or biotinylated probes, potentially enhancing membrane permeability and the maintenance of activity. Of the seven probes produced, the three most biologically active were employed in preliminary target identification trials. Despite the potent activity of these probes, specific labeling events were not conclusively observed due to a considerable degree of nonspecific protein binding. Nevertheless, the successful synthesis of potent biologically active probe molecules will serve as a starting point for initiating more sensitive methods of probe-based target identification.  相似文献   

10.
Pironetin is an α-tubulin-binding natural product with potent antiproliferative activity against several cancer cell lines that inhibits cell division by forming a covalent adduct with α-tubulin via a Michael addition into the natural product’s α,β-unsaturated lactone. We designed and prepared analogs carrying electron-withdrawing groups at the α-position (C2) of the α,β-unsaturated lactone with the goal to generate potent and selective binding analogs. We prepared derivatives containing halogens, a phenyl, and a methyl group at the C2 position to evaluate the structure-activity relationship at this position. Testing of the analogs in ovarian cancer cell lines demonstrated 100–1000-fold decreased antiproliferative activity.  相似文献   

11.
Topochemical model for prediction of anti-HIV activity of HEPT analogs   总被引:1,自引:0,他引:1  
The relationship between the superadjacency topochemical index and the anti-HIV activity of HEPT analogs has been investigated in the present study. The values of superadjacency topochemical index of all the analogs involved in the data set were calculated using an in-house computer program. Resulting data were analyzed and a suitable model was developed after identification of the active range. Subsequently, a computed biological activity was assigned to each of the compounds involved in the dataset, which was then compared with the reported anti-HIV activity. Accuracy of prediction was found to be 88% using the said model. The predictive ability of the model indicates that this model can be used for predicting the anti-HIV activity of the compounds prior to synthesis and may prove to be highly beneficial for providing lead structures for development of potent anti-HIV agents.  相似文献   

12.
Preventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (−)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties. In an attempt to identify more drug-like EGCG derivatives with improved efficacy as HCV entry inhibitors, we initiated structure–activity investigations using semi-synthetic and synthetic EGCG analogs. The data show that there are multiple regions in the EGCG structure that contribute to activity. The gallate ester portion of the molecule appears to be of particular importance as a 3,4-difluoro analog of EGCG enhanced potency. This derivative and other active compounds were shown not to be cytotoxic in Huh-7 cell culture. These data suggest that more potent, non-cytotoxic EGCG analogs can be prepared in an attempt to identify more drug-like candidates to treat HCV infection by this mechanism.  相似文献   

13.
To identify inhibitors of the intrinsic N-acetylated alpha-linked acidic dipeptidase (NAALADase) activity of prostate specific membrane antigen (PSMA) that may be useful for targeting imaging agents or chemotherapeutic drugs to disseminated prostate cancer, analogs of the tetrahedral transition state for hydrolysis of the natural substrate, N-acetylaspartylglutamate (NAAG), were synthesized. These compounds were assayed for their ability to inhibit the membrane-associated enzyme isolated from LNCaP prostate cancer cells. Active inhibitors were further assayed for their cytotoxicity and membrane binding. We have identified nine compounds, including fluorescent and iodine-labeled conjugates, which inhibit NAALADase enzyme activity with IC(50)s at, or below, 120nM. The binding of these compounds to the cell surface of viable LNCaP prostate tumor cells appears to be specific and saturable, and none of the compounds alter the cell cycle kinetics or induce apoptosis in LNCaP cells, suggesting that they are relatively innocuous and are suitable for targeting imaging agents or cytotoxic drugs to disseminated prostate cancer.  相似文献   

14.
Acebedo SL  Alonso F  Galagovsky LR  Ramírez JA 《Steroids》2011,76(10-11):1016-1020
In this paper we report the synthesis of four ring-A difluorinated analogs of brassinosteroids. The bioactivity of these new compounds was evaluated using the rice lamina inclination test. The results show that one of these analogs elicits a bioactivity comparable to that of 28-homocastasterone, a highly active natural brassinosteroid. This finding suggests that both hydroxyls at C-2 and C-3 in active brassinosteroids are involved as hydrogen bond acceptors in their interactions with the cellular receptor.  相似文献   

15.
We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site.  相似文献   

16.
This Letter presents the synthesis and biological evaluation of a collection of 2-aminothiazoles as a novel class of compounds with the capability to reduce the production of PGE(2) in HCA-7 human adenocarcinoma cells. A total of 36 analogs were synthesized and assayed for PGE(2) reduction, and those with potent cellular activity were counter screened for inhibitory activity against COX-2 in a cell free assay. In general, analogs bearing a 4-phenoxyphenyl substituent in the R(2) position were highly active in cells while maintaining negligible COX-2 inhibition. Specifically, compound 5l (R(1)=Me, R(2)=4-OPh-Ph, R(3)=CH(OH)Me) exhibited the most potent cellular PGE(2) reducing activity of the entire series (EC(50)=90 nM) with an IC(50) value for COX-2 inhibition of >5 μM in vitro. Furthermore, the anti-tumor activity of analog 1a was analyzed in xenograft mouse models exhibiting promising anti-cancer activity.  相似文献   

17.
A variety of 6- and 8-substituted analogs of cAMP (cyclic adenosine 3:5-monophosphate) have been tested for their ability to increase activity of tyrosine aminotransferase (EC 2.6.1.5) in cultured Reuber H35 hepatoma cells. Some analogs, particularly the 8-thio-substituted ones, produced effects approximately equivalent to those generated by N-6, O2'-dibutyryl cAMP. In contrast, cAMP and its O-2-monobutyryl derivative were relatively ineffective even at very high concentrations, whereas three other analogs actually depressed the activity of the aminotransferase. Changes in enzyme activity generated by the various analogs were paralleled closely by changes in the relative rate of aminotransferase synthesis. An excellent correlation was found to exist between the ability of any given analog to influence the activity of tyrosine aminotransferase and that of phosphoenolpyruvate carboxykinase (EC 4.1.1.32). A similar correlation was found to exist between the ability of various analogs to evelate the activity of these enzymes and to inhibit reversibly the growth of H35 cells. Only one of five inhibitors of cAMP phosphodiesterase activity tested produce any increase in aminotransferase activity when added alone. All of the 6- and 8-substituted analogs tested, including noniducers, stimulated f1 histone phosphorylation in crude rat liver extracts with approximately equal potencies. On the other hand, dibutyryl cAMP was only a weak activator of protein kinase in vitro, even though it is a potent enzyme inducer. A possible resolution of this apparent discrepancy has been provided by preliminary analyses of site-specific f1 histone phosphorylation in whole cells. Only compounds active as aminotransferase inducers are capable of stimulating phosphorylation of the serine-37 residue of endogenous f1 histone (3- to 10-fold).  相似文献   

18.
Synthetic analogs of (2'-5')oligo(A) were assayed for endonuclease activation in cell extracts and for inhibition of protein synthesis in intact cells. The analogs are triadenylates: (i) methylated in the terminal 3'-OH; (ii) methylated at all three 3'-OH groups; (iii) with different numbers of phosphate groups at the 5' terminus or with a methylene group between the beta- and gamma-phosphate. Only 5'-phosphorylated monomethylated analogs activate an endonuclease in cell extracts and are powerful inhibitors of protein synthesis in intact cells. The analogs with only one 5'-terminal phosphate may require addition of another phosphate for activity since the kinase inhibitor 2-aminopurine prevents endonuclease activation by this compound but not by the di- and triphosphate-terminated triadenylates. These results suggest that two terminal phosphates and one or two free 3'-OH are required for endonuclease activation and inhibition of protein synthesis. The monomethylated analogs are more active than (2'-5')pppA3 because of their resistance to degradation by cellular enzymes. Accordingly, the monomethylated analogs cause a prolonged inhibition of protein synthesis in human fibroblasts treated with nanomolar concentrations of these compounds.  相似文献   

19.
Glycerol 3-phosphate acyltransferase (GPAT) isozymes are central control points for fat synthesis in mammals. Development of inhibitors of these membrane-bound enzymes could lead to an effective treatment for obesity, but is thwarted by an absence of direct structural information. Based on a highly successful study involving conformationally constrained glycerol 3-phosphate analogs functioning as potent glycerol 3-phosphate dehydrogenase inhibitors, several series of cyclic bisubstrate and transition state analogs were designed, synthesized, and tested as GPAT inhibitors. The weaker in vitro inhibitory activity of these compounds compared to a previously described benzoic acid series was then examined in docking experiments with the soluble squash chloroplast GPAT crystal structure. These in silico experiments indicate that cyclopentyl and cyclohexyl scaffolds prepared in this study may be occluded from the enzyme active site by two protein loops that sterically guard the phosphate binding region. In view of these findings, future GPAT inhibitor design will be driven toward compounds based on planar frameworks able to slide between these loops and enter the active site, resulting in improved inhibitory activity.  相似文献   

20.
We are reporting on the synthesis of fluorescent nucleoside analogs with modified sugar moieties (e.g., sugars other than ribose and 2′-deoxyribose). Four novel derivatives of the fluorescent thymidine analog 6-methyl-3-(β-D-2′-deoxyribofuranosyl) furano-[2,3-d]pyrimidin-2-one were synthesized via Sonogashira reaction and subsequent copper-catalyzed cycloaddition. These compounds represent promising tools for studying nucleoside metabolism inside living cells, as well as for screening directed evolution libraries of 2′-deoxyribonucleoside kinases with new and improved activity for the corresponding nucleoside analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号