首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
To investigate the possible mechanism of the therapeutic action of propolis, we studied: (a) the effect of propolis, its components, caffeic acid phenethyl ester (CAPE), caffeic acid (CA), quercetin and naringenin, as well as the synthetic compounds indomethacin (IM) and nordihydroguaiaretic acid (NDGA), and a novel lipoxygenase inhibitor N,N′-dicyclohexyl-O-(3,4-dihydroxycinnamoyl)isourea (DCHCU) on eicosanoid production by mouse peritoneal macrophages in vitro; (b) the effect of IM, NDGA, CA, CAPE, DCHCU and propolis on eicosanoid production during acute inflammation in vivo; and (c) the ex vivo and in vivo effect of dietary propolis on arachidonic acid metabolism. The ethanol extract of propolis suppressed prostaglandin and leukotriene generation by murine peritoneal macrophages in vitro and during zymosan-induced acute peritoneal inflammation in vivo. Dietary propolis significantly suppressed the lipoxygenase pathway of arachidonic acid metabolism during inflammation in vivo. CAPE was the most potent modulator of the arachidonic acid cascade among the propolis components examined.  相似文献   

2.
The aim of the present study was to evaluate the potential of Turkish propolis extracts if they prevent or protect foreskin fibroblast cells against hydrogen peroxide (H?O?)-induced oxidative DNA damage. Hydrogen peroxide (40 μM) was used as an inducer of oxidative DNA damage. The damage of DNA was evaluated by using the alkaline single cell gel electrophoresis (comet) assay. Turkish propolis extracts at concentrations of 25, 50, 75 and 100 μg/ml were prepared by ethanol. Anti-genotoxicity was assessed before, simultaneously, and after treatment of propolis extract (50 μg/ml) with H?O?. The results showed a significant decrease in H?O?-induced DNA damage in cultures treated with propolis extract. The antioxidant activity of phenolic components found in propolis may contribute to reduce the DNA damage induced by H?O?. Our findings confirmed the chemopreventive activity of propolis and showed that this effect may occur under different mechanisms.  相似文献   

3.
Propolis was extracted using water and various concentrations of ethanol as solvents. The extracts were investigated by measurement of absorption spectrum with a UV spectrophotometer, reversed phase-high pressure thin-layer chromatography and reversed phase-HPLC. Maximum absorption of all extracts was 290 nm, resembling flavonoid compounds, and the 80% ethanolic extract showed highest absorption at 290 nm. The most isosakuranetin, quercetin, and kaempferol were extracted from mixtures of propolis and 60% ethanol, while 70% ethanol extracted the most pinocembrin and sakuranetin, but 80% ethanol extracted more kaempferide, acacetin, and isorhamnetin from propolis. The 60 to 80% ethanolic extracts of propolis strongly inhibited microbial growth and 70 and 80% ethanolic extracts had the greatest antioxidant activity and 80% ethanolic extract strongly inhibited hyaluronidase activity.  相似文献   

4.
AIMS: To determine the antimycotic and cytotoxic activities of partially purified propolis extract on yeasts, xylophagous and phytopathogenic fungi. To compare these activities with pinocembrin and galangin isolated from this propolis and with the synthetic drugs ketoconazole and clortrimazole. METHODS AND RESULTS: Ethanolic propolis extract was partially purified by cooling at -20 degrees C. Two of its components were isolated by HPLC and identified as pinocembrin and galangin. The antifungal activity was assayed by bioautography, hyphal radial growth, hyphal extent and microdilution in liquid medium. Cytotoxicity was studied with the lethality assay of Artemia salina. The obtained results were compared with the actions of ketoconazole and clortrimazole. The results showed that the antifungal potency of ketoconazole and clortrimazole is higher than pinocembrin, galangin and the partially purified propolis extract in this order. Otherwise, the cytotoxicity of the synthetic drugs is also the highest. CONCLUSIONS: Partially purified propolis extract inhibits fungal growth. The comparison of its relative biocide potency and cytotoxicity with synthetic drugs and two components of this propolis (pinocembrin and galangin) showed that the propolis from 'El Siambón', Tucumán, Argentina, is a suitable source of antifungal products. SIGNIFICANCE AND IMPACT OF THE STUDY: The partially purified propolis extract and its isolated compounds, pinocembrin and galangin, have the capacity of being used as antifungals without detriment to the equilibrium of agroecosystems. The impact of this study is that the preparation of agrochemicals with reduced economic costs using a partially purified preparation as the active principle is possible.  相似文献   

5.
Boyanova L  Kolarov R  Gergova G  Mitov I 《Anaerobe》2006,12(4):173-177
The aim was to evaluate the effect of 30% ethanolic extract of Bulgarian propolis on 94 clinical anaerobic strains. The strains were tested by both agar-well diffusion (wells, 7 mm diameter) and disk-diffusion methods. Only 15% of Clostridium-, 3.3% of other Gram-positive- and 9.1% of Gram-negative anaerobic strains were not inhibited by 30 microL propolis extract per well. Propolis extract was more active than the ethanol (P < 0.001). By 30 microL extract per well, mean inhibitory diameters of the clostridia, other Gram-positive- and Gram-negative anaerobes were 11.5, 13.1, and 11.3 mm, and those by 90 microL were 16, 18.1 and 15.4 mm, respectively. Mean inhibitory diameters of all strains by 30 and 90 microL ethanol were only 8.4 and 9.5 mm. By 30 microL propolis extract per well, inhibitory diameters of 15 mm or more were more common in Gram-positive (32%) than in Gram-negative bacteria (13.6%, P < 0.05). Moist propolis disks inhibited more strains (89.4%) than dried disks (68.1%, P < 0.001). Most (81.8%) Bacteroides fragilis group strains and 75% of clostridial strains were inhibited by moist EEP disks. CONCLUSION: Bulgarian propolis was active against most anaerobic strains of different genera. In addition to oral pathogens, an activity of propolis against Clostridium, Bacteroides and Propionibacterium species was observed. The results could motivate a higher medical interest and further trials for evaluating the use of bee glue for prophylaxis or treatment of some anaerobic infections such as oral, skin and wound diseases.  相似文献   

6.
Chrysin, apigenin, flavonoids, flavanones, naringenin, ethyl oleate, 3-4-dimethoxy-cinnamic acid and 9-octadecenoic acid were the predominant components of propolis samples collected from different regions of Turkey. The extracts of P3 from Denizli-Ba?karci, P5 from Denizli and P7 from Tekirda? had effective antibacterial activities on Gram-negatives. Chrysin, which has antibacterial activity, was found to be high concentration. The extracts of P3, P2B from Aydin and P6 from Konya had much more effective antibacterial activities on Gram-positives. The total antioxidant activity increased with the increasing amount of extracts added to linoleic acid emulsion. All doses of propolis ethanol extract displayed antioxidant activity.  相似文献   

7.
Propolis, a natural product derived from plant resins collected by the honeybees, has been used for thousands of years in folk medicine for several purposes. The extract that contains amino acids, phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes and caffeic acid, possesses several biological activities such as anti-inflammatory, immunostimulatory, anti-viral and anti-bacterial. In this study, we assay the effects of propolis extract on the production of key molecules released during chronic inflammatory events as nitric oxide (NO) and glycosaminoglycans (GAGs) in cultures of human cartilaginous tissues and chondrocytes, stimulated with interleukin-1beta (IL-1beta). We observed that this natural compound and its active principle, caffeic acid phenethyl ester (CAPE), were able to contrast the harmful effects of IL-1beta.Our data clearly demonstrated the protective action of propolis in cartilage alteration, that appears greater than that elicited by indomethacin, commonly employed in joint diseases.  相似文献   

8.
Extracts of propolis samples collected in Brazil and Bulgaria were assayed against four Leishmania species--Leishmania amazonensis, L. braziliensis, L. chagasi from the New World, and L. major from the Old World--associated to different clinical forms of leishmaniasis. The composition of the extracts has been previously characterized by high temperature high resolution gas chromatography coupled to mass spectrometry. Considering the chemical differences among the extracts and the behavior of the parasites, it was observed significant differences in the leishmanicidal activities with IC50/1 day values in the range of 2.8 to 229.3 microg/ml . An overall analysis showed that for all the species evaluated, Bulgarian extracts were more active than the ethanol Brazilian extract. As the assayed propolis extracts have their chemical composition determined it merits further investigation the effect of individual components or their combinations on each Leishmania species.  相似文献   

9.
Although caffeic acid phenethyl ester (CAPE), an active flavonoid, plays an important role in the antioxidant activity of honeybee propolis, the isolation of CAPE from honeybee propolis is time-consuming due to wide variety of impurities present. Therefore, biochemical method to synthesize CAPE was investigated in this study. Since ionic liquids (ILs) possess some unique characteristics as appreciated alternatives to conventional solvents for certain biotransformation, the effect of ILs as reaction media for enzymatic synthesis of CAPE was assessed. Several factors including substrate molar ratio, and reaction temperature affecting the conversion yield of lipase-catalyzed CAPE synthesis were also investigated. Reaction yields were significantly higher in hydrophobic ILs than in hydrophilic ILs (almost zero). Among nine hydrophobic ILs tested, the highest conversion of synthetic reaction was obtained in 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf(2)N]). A reaction temperature of 70 °C was found to give high conversion. In addition, optimal substrate molar ratio between phenethyl alcohol and caffeic acid (CA) was decreased significantly from 92:1 to 30:1 when ILs were used instead of isooctane.  相似文献   

10.
The chemical composition and in vitro antioxidant activity of the essential oil of propolis (EOP) collected from 25 locations in China was investigated. Steam‐distillation extraction was used to extract the EOP, and chemical composition was identified by GC/MS. The antioxidant activities of EOP were also measured. The result showed that a total of 406 compounds were detected in EOP. The major compounds of Chinese EOP were cedrol, γ‐eudesmol, benzyl alcohol, phenethyl alcohol, 2‐methoxy‐4‐vinylphenol, 3,4‐dimethoxystyrene and guaiol. Principal component analysis revealed the significant correlation between EOP compositions and their origins, and certain correlation was detected between EOP and their color. Linear discriminant analysis showed that 88 % and 84 % of the propolis samples were predicted correctly as the groupings identified by climatic zone and the color, respectively. Furthermore, the differences of antioxidant activities of EOP were significant. EOP of Shandong had the strongest antioxidant activities, whereas EOP of Guangdong, Yunnan and Hunan showed the poorest.  相似文献   

11.
AIMS: The chemical composition of ethanol extracts from a Brazilian (Et-Bra) and a Bulgarian (Et-Blg) propolis, and their activity against the protozoan Trypanosoma cruzi, several fungi and bacteria species were determined. METHODS AND RESULTS: The chemical composition was determined by high temperature high resolution gas chromatography coupled to mass spectrometry. Microbiological activity was assayed in vitro against T. cruzi, Candida albicans, Sporothrix schenckii, Paracoccidioides brasiliensis, Neisseria meningitidis, Streptococcus pneumoniae and Staphylococcus aureus. CONCLUSIONS: Et-Bra and Et-Blg, although with totally distinct compositions, were active against T. cruzi and the three species of fungi. Et-Blg was more effective than Et-Bra against bacteria, particularly N. meningitidis and Strep. pneumoniae. SIGNIFICANCE AND IMPACT OF THE STUDY: Although with different classes of components, both propolis extracts showed microbicidal activity. For the bactericidal activity it was possible to establish a positive correlation with the high content of flavonoids of the Bulgarian extract.  相似文献   

12.
蜂胶中的主要成分咖啡酸苯乙酯作为重要的抗氧化剂和癌预防试剂分子,引起了人们相当的兴趣。为了研究其构效关系,作者通过酰基化反应合成了6个咖啡酸苯乙酯衍生物,即:咖啡酸苯乙酯(caffeic acid phenethyl ester,CAPE)、芥子酸苯乙酯(sinapic acid phenethyl ester,SAPE)、阿魏酸苯乙酯(ferulic acid phenethyl ester,FAPE)、4-羟基肉桂酸苯乙酯(4-hydroxycinnamicacid phenethyl ester,4-HCAPE)、3,5-二羟基肉桂酸苯乙酯(3,5-dihydroxycinnamic acidphenethyl ester,3,5-DHCAPE)和3-羟基肉桂酸苯乙酯(3-hydroxycinnamic acid phenethyl este,3-HCAPE)。以水溶性偶氮引发剂2,2'-偶氮二(2-脒基丙烷)二盐酸盐诱导的红细胞溶血为模型,研究了它们的抗氧化活性。根据实验测得的有效抑制溶血时间,其活性顺序为:CAPE≈4-HCAPE>SAPE>FAPE>3,5-DHCAPE>3-HCAPE。其活性显著...  相似文献   

13.
The present study focused on the evaluation of phytochemical properties, essential mineral elements, and heavy metals contained in raw propolis produced by stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami found in the same ecological conditions and environment in Brunei Darussalam. The results indicated that propolis of the three stingless bee species mainly consisted of lipids (45.60–47.86%) and very low carbohydrate (0.17–0.48%) and protein contents (0.18–1.18%). The propolis was rich in mineral elements, thus good sources of minerals, while they contained low concentrations of all heavy metals. Propolis of the different bee species could be distinguished based on their mineral compositions. The vibrational and absorption spectra suggested that propolis contains π-conjugated aliphatic and aromatic compounds as well as aromatic acids having amine, ester, carbonyl, alkyl, and hydroxyl functional groups which might be attributed to the presence of phenolic and flavonoid compounds. The antioxidant capacity of the propolis, based on radical scavenging activity of their ethanol extract, was in line with their total phenolic content. The ethanol extract of the propolis also showed antimicrobial activities against four bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). The propolis showed slightly higher antibacterial activity against Gram-positive (B. subtilis and S. aureus) bacteria, indicating that the antimicrobial active compounds could be associated with flavonoids, which were quantified to be approximately comparable in all the propolis.  相似文献   

14.
The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.  相似文献   

15.
Three spectrophotometric methods for the quantitative determination of different flavonoid groups and total phenolics in Croatian propolis samples were optimised and validated. The assay based on the formation of aluminium chloride complex (with galangin as a standard) was applied to the quantification of flavones and flavonols, while the 2,4-dinitrophenylhydrazine method (with pinocembrine as a reference) was used for the quantification of flavanones. Total phenolic content was measured by the Folin-Ciocalteau method using reference solution of caffeic acid:galangin:pinocembrine (1:1:1). Through analytical validation, the most suitable extraction conditions (with respect to time, temperature and concentration of extraction solvent) were determined, and final conditions for the extraction were established (80% ethanol, 1 h at the room temperature). The appropriate ratio between the mass of raw propolis and the extraction solvent volume was also established. By the application of the optimised method of extraction, 10 propolis tinctures were prepared and subjected to the analysis of general pharmacopoeial parameters, which are fundamental for the creation of quality specification (relative density, dry residue of extract, content of ethanol, methanol and 2-propanol). Additionally, the content of waxes as the main inactive constituents was determined in order to observe the level of their migration from crude propolis to the prepared tinctures.  相似文献   

16.
Han SK  Yamauchi K  Park HK 《Microbios》2001,105(411):71-75
Pig meat was treated with 0.3% ethanol extracted propolis (EEP), 0.3% water extracted propolis (WEP), 0.4% dried residue of ethanol extracted propolis (DREEP) and 0.2% potassium sorbate (PS). The samples were stored for 8 weeks at 4, 10 and 20 degrees C, respectively. Volatile basic nitrogen (VBN) tests were carried out to measure the influence of temperature after 0, 2, 4 and 8 weeks. The VBN value in 0.3% EEP pork sausages was the lowest for all treatments after 8 weeks of storage at 4 degrees C. The 0.3% EEP treatment was superior to the 0.2% PS treatment. This was due to the lower VBN of the former than that of the latter. Hence, EEP, WEP and DREEP can serve as good chemical preservatives of pork meat products and can contribute to promote human health because they are naturally produced.  相似文献   

17.
ABSTRACT

Brazilian red propolis reportedly has reactive oxygen species (ROS) scavenging effects in vitro, but the cellular mechanisms remain unclear. In the present study, the effects of an ethanol extract of Brazilian red propolis (EERP) on the Nrf2-ARE intracellular antioxidant pathway were examined in vitro and in vivo. EERP and its constituents transactivated the reporter gene through the ARE sequence and enhanced the expression of Nrf2-regulated genes in HEK293 cells. It also increased Nrf2 protein in the nucleus, which was partially inhibited by kinase inhibitors. Furthermore, EERP suppressed ROS generation and cytotoxicity induced by tert-butyl hydroperoxide. In vivo, orally administered EERP increased the expression of Nrf2-regulated genes in mice liver. These results suggest that EERP is a potential resource for preventing oxidative stress-related diseases as an Nrf2 inducer.  相似文献   

18.
Propolis, the resinous product collected by honey bees from plants, is used as folk medicine since ancient time. Recently, immunoregulatory and anti-inflammatory properties of propolis have been published. The detailed mechanisms of actions of propolis and its components on immune cells, however, are still unknown. Therefore, we studied the effects of different propolis extracts, of the flavonoids hesperidin and quercetin as well as of caffeic acid phenethyl ester (CAPE) on basic human immune cell functions. In detail, we measured the effects on DNA synthesis and production of different types of cytokines, namely IL-1beta, IL-12, IL-2, IL-4, IL-10 and TGF-beta1, of mitogen-activated peripheral blood mononuclear cells (PBMC) as well as of purified T lymphocytes. Our data clearly show that propolis as well as its constituents studied are capable of dose-dependently suppressing phythemagglutinin (PHA)-induced DNA synthesis of PBMC and T cells. Moreover, cytokines produced by monocytes/macrophages (IL-1beta, IL-12), by Th1 type (IL-2) as well as Th2 type (IL-4) lymphocytes were found to be also suppressed, whereas the production of TGF-beta1 by T regulatory cells was ascertained to be increased. These data convincingly demonstrate that propolis has a direct regulatory effect on basic functional properties of immune cells which may be mediated by the Erk2 MAP-kinase signal pathway. Thus, the bee product propolis can be considered as a powerful natural anti-inflammatory medicine influencing different types of immune-responses probably via immunoregulatory T cells.  相似文献   

19.
This study investigated the chemical composition and antimicrobial activity of propolis collected from two stingless bee species Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae). Six xanthones, one triterpene and one lignane were isolated from Tetragonula laeviceps propolis. Triterpenes were the main constituents in T. melanoleuca propolis. The ethanol extract and isolated compounds from T. laeviceps propolis showed a higher antibacterial activity than those of T. melanoleuca propolis as the constituent α-mangostin exhibited the strongest activity. Xanthones were found in propolis for the first time; Garcinia mangostana (Mangosteen) was the most probable plant source. In addition, this is the first report on the chemical composition and bioactivity of propolis from T. melanoleuca.  相似文献   

20.
The antimicrobial activity of three Brazilian propolis extracts was evaluated on bacterial strains representing major rumen functional groups. The extracts were prepared using different concentrations of propolis and alcohol, resulting in different phenolic compositions. The propolis extracts inhibited the growth of Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, Ruminococcus albus 7, Butyrivibrio fibrisolvens D1, Prevotella albensis M384, Peptostreptococcus sp. D1, Clostridium aminophilum F and Streptococcus bovis Pearl11, while R. albus 20, Prevotella bryantii B14 and Ruminobacter amylophilus H18 were resistant to all the extracts. The inhibited strains showed also different sensitivity to propolis; the hyper-ammonia-producing bacteria (C. aminophilum F and Peptostreptococcus sp. D1) being the most sensitive. Inhibition of hyper-ammonia-producing bacteria by propolis would be beneficial to the animal. The extract containing the lowest amount of phenolic compounds (LLOS C3) showed the lowest antimicrobial activity against all the bacteria. The major phenolic compounds identified in the propolis extracts (naringenin, chrysin, caffeic acid, p-coumaric acid and Artepillin C) were also evaluated on four sensitive strains. Only naringenin showed inhibitory effect against all strains, suggesting that naringenin is one of the components participating to the antibacterial activity of propolis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号