首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the glutathione C60 derivative on the cytotoxicity of a highly reactive free radical NO (nitric oxide) has been investigated. Consistent with its cytoprotective abilities, the derivative scavenges ROS (reactive oxygen species) and RNS (reactive nitrogen species) both in vitro and under cell‐free conditions. Moreover, the glutathione C60 derivative protected PC12 cells from the cytotoxic effect of the NO‐releasing compound, SNP (sodium nitroprusside). Addition of glutathione C60 derivative alone did not induce apoptosis and necrosis. The results suggest that the glutathione C60 derivative has the potential to prevent NO‐mediated cell death without evident toxicity.  相似文献   

2.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. One of the effective ways to prevent the reactive oxygen species (ROS) mediated cellular injury is dietary or pharmaceutical augmentation of free radical scavengers. In the present study, we describe the synthesis and characterization of a novel cystine C(60) derivative (CFD). The compound was analyzed by FT-IR, (1)H NMR, (13)C NMR, LC-MS and elemental analysis. It contains five cystine moieties per C(60) molecule. This water-soluble amino-fullerene derivative was able to scavenge both superoxide and hydroxyl radical with biocompatibility. We investigated its potential protective effects on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. Cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay, flow cytometry analysis, PI/Hoechst 33342 staining and glutathione peroxidase assay. The CFD was able to reduce the accumulation of reactive oxygen species and cellular damage caused by hydrogen peroxide in PC12 cells. RF assay demonstrated that CFD could penetrate through the cell membrane and it has played its distinguished role in protecting PC12 cells against hydrogen peroxide-induced cytotoxicity. The results suggest that CFD has the potential to prevent oxidative stress-induced cell death without evident toxicity. Hence, we can hypothesize that the protective effect of CFD on hydrogen peroxide-induced apoptosis is related to its scavenger activity.  相似文献   

3.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially prominent in neural diseases. One of the effective ways to prevent the reactive oxygen species (ROS) mediated cellular injury is dietary or pharmaceutical augmentation of some free radical scavenger. Water-soluble amino-fullerene derivative is a novel compound that behaves as a free radical scavenger with excellent biocompatibility. In the present study, we synthesized a novel beta-alanine C(60) derivative. The product was characterized by FT-IR, (1)H NMR, (13)C NMR, LC-MS and elemental analysis. We investigated the protective effect on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death determined by MTT, flow cytometry analysis and PI/Hoechst 33342 staining. Moreover, the scavenging ability of beta-alanine C(60) derivative to reactive oxygen species both in vivo and in vitro of PC12 cells was measured. The results suggest that beta-alanine C(60) derivative has the potential to prevent oxidative stress-induced cell death without evident toxicity. Hence, on the basis of the above-mentioned studies, we can hypothesize that the protective effect of beta-alanine C(60) derivative on H(2)O(2) induced apoptosis is related to their known scavenger activity toward ROS.  相似文献   

4.
ContextDiphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands.ObjectiveTo assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.Materials and methodsTwo successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.ResultsThe elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475–1479 cm−1 and 972–977 cm−1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.ConclusionOur study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).  相似文献   

5.
《Free radical research》2013,47(12):1240-1247
The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative.  相似文献   

6.
Ten novel artemisinin derivatives containing fluorine atoms were synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies in this study. The in vitro cytotoxicity against U87MG, SH-SY5Y, MCF-7, MDA-MB-231, A549 and A375 cancer cell lines was evaluated by MTT assay. Compound 9j was the most potent anti-proliferative agent against the human breast cancer MCF-7 cells (IC50?=?2.1?μM). The mechanism of action of compound 9j was further investigated by analysis of cell apoptosis and cell cycle. Compound 9j induced cell apoptosis and arrested cell cycle at G1 phase in MCF-7 cells. Our promising findings indicated that the compound 9j could stand as potential lead compound for further investigation.  相似文献   

7.
The current study was aimed at investigating the neuroprotective effects of the butanol fraction from Cordyceps cicadae (CBU), which was responsible for the anti‐aging effect of this medicine. Glutamate‐induced PC12 cells were used as a model to determine the neuroprotective effect against oxidative cell death. Cell viability, cytotoxicity, flow cytometry, mitochondrial transmembrane potential (MMP), reactive oxygen species (ROS), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) levels were analyzed to assess neuronal cell survival or death. The results obtained from the above evaluations showed that CBU was the most effective fraction and even better than pure compounds present in Ccicadae in terms of suppressing glutamate‐induced damage in PC12 cells, increasing cell viability, decreasing lactase dehydrogenase (LDH) release, and reduction of apoptosis induced by exposure to glutamate. Furthermore, CBU protected cells against mitochondrial dysfunction and oxidative stress as indicated by the suppression of ROS accumulation and up regulation of the levels of GSH‐Px and SOD. In summary, the above results showed that CBU exerted neuroprotective effect against oxidative damage, and this activity could be partly due to the action of nucleosides present in the CBU.  相似文献   

8.
We investigated the cytotoxicity of the fullerene C60 derivatives. We showed that complexes of C60 fullerene with polyvinylpyrrolidone (m.w. of polyvinylpyrrolidone 10000 and 25000), C60-NO2-proline and C60-alanine had no toxic effect on HEp-2 cells. Sodium salt of polycarboxylic derivative of fullerene C60 exerted a pronounced toxic effect on this cell culture.  相似文献   

9.
Pyrazole moiety represents an important category of heterocyclic compound in pharmaceutical and medicinal chemistry. The novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives were synthesized with complementary regioselectivity. The chemical structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectral analysis. The chemical entities were screened in various cancer cell lines to assess their cell viability activity. Results showed that the compound 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl) pyridine (5d) possessed maximum cytotoxic effect against breast cancer and leukemic cells. The cytotoxicity was confirmed by live–dead cell assay and cell cycle analysis. Mitochondrial membrane potential, Annexin V-FITC staining, DNA fragmentation, Hoechst staining, and western blot assays revealed the ability of compound 5d to induce cell death by activating apoptosis in cancer cells. Thus, the present study demonstrates that compound 5d could be an attractive chemical entity for the development of small molecule inhibitors for treatment of leukemia and breast cancer.  相似文献   

10.
Lee CS  Han ES  Lee WB 《Neurochemical research》2003,28(12):1833-1841
Phenelzine, deprenyl, and antioxidants (SOD, catalase, ascorbate, or rutin) reduced the loss of cell viability in differentiated PC12 cells treated with 250 M MPP+, whereas N-acetylcysteine and dithiothreitol did not inhibit cell death. Phenelzine reduced the condensation and fragmentation of nuclei caused by MPP+ in PC12 cells. Phenelzine and deprenyl prevented the MPP+-induced decrease in mitochondrial membrane potential, cytochrome c release, formation of reactive oxygen species, and depletion of GSH in PC12 cells. Phenelzine revealed a scavenging action on hydrogen peroxide and reduced the hydrogen peroxide–induced cell death in PC12 cells, whereas deprenyl did not depress the cytotoxic effect of hydrogen peroxide. Both compounds reduced the iron and EDTA-mediated degradation of 2-deoxy-d-ribose degradation. The results suggest that phenelzine attenuates the MPP+-induced viability loss in PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.  相似文献   

11.
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.  相似文献   

12.
The role of novel triazine derivatives against oxidative stress exerted by hydrogen peroxide on differentiated rat pheochromocytoma (PC12) cell line was examined and a consistent protection from H2O2-induced cell death, associated with a marked reduction in caspase-3 activation, was observed. Moreover, activation of NF-κB, a known regulator of a host of genes that involves in specific stress and inflammatory responses by H2O2, was greatly impaired by triazine pretreatment in differentiated PC12 cells. Neuroprotective effect of such compounds may represent a promising approach for treatment of neurodegenerative diseases.  相似文献   

13.
The advances in the treatment of chronic myeloid leukemia (CML) during the last years were also accompanied by the development of evading strategies by tumor cells, resulting in chemotherapy resistance in some patients. Patented organopalladium compounds derived from the reaction of N,N-dimethyl-1-phenethylamine (dmpa) with [1,2-ethanebis(diphenylphosphine)] (dppe) exhibited a potent antitumor activity in vivo and in vitro in melanoma cells. We showed here that the cyclopalladated derivative [Pd2(R(+))C2, N-dmpa)2(μ-dppe)Cl2], named compound 7b, was highly effective to promote cell death in the K562 human leukemia cells and its mechanisms of action were investigated. It was shown that compound 7b was able to promote exclusively apoptotic cell death in K562 cells associated to cytochrome c release and caspase 3 activation. This cytotoxic effect was not observed in normal peripheral mononuclear blood cells. The compound 7b-induced intrinsic apoptotic pathway was triggered by the protein thiol oxidation that resulted in the dissipation of the mitochondrial transmembrane potential. The preventive effect of the dithiothreitol on the compound 7b-induced cell death and all downstream events associated to apoptosis confirmed that death signal was elicited by the thiol oxidation. These findings contribute to the elucidation of the palladacycle 7b-induced cell death mechanism and present this compound as a promising drug in the CML antitumor chemotherapy.  相似文献   

14.
Water-soluble [60]fullerene (C60) derivatives were synthesized to examine their bioactivities. PC12 cells were used as a model of nerve cells and the bioactivities of synthesized C60 derivatives together with some reported ones were tested. Among the compounds tested, C60/(γ-CyD)2, C60-bis(γ-CyD) (5) containing C60-mono(γ-CyD) (5′), and C60/PVP were sufficiently soluble in water and showed an enhancing effect on the neurite outgrowth of NGF-treated PC12 cells.  相似文献   

15.
A lead compound with the (1,3,4-thiadiazol-2-yl)-acrylamide scaffold was discovered to have significant cytotoxicity on several tumor cell lines in an in-house cell-based screening. A total of 60 derivative compounds were then synthesized and tested in a CCK-8 cell viability assay. Some of them exhibited improved cytotoxic activities. The most potent compounds had IC50 values of 1–5 μM on two acute leukemia tumor cell lines, i.e. RS4;11 and HL-60. Flow cytometry analysis of several active compounds and detection of caspase activation indicated that they induced caspase-dependent apoptosis. It was also encouraging to observe that these compounds did not have obvious cytotoxicity on normal cells, i.e. IC50 > 50 μM on HEK-293T cells. Although the molecular targets of this class of compound are yet to be revealed, our current results suggest that this class of compound represents a new possibility for developing drug candidates against acute leukemia.  相似文献   

16.
Single-step synthesis of novel 4-hydrazinothiazole derivatives 6a–e was achieved under mild conditions using the sequential four-components method involving isothiocyanate, aminoguanidine, carbonyl adduct, and α-haloketone derivatives. Deprotection of these hydrazinothiazoles was influenced by acylation, providing a novel group of diacylated molecular structures with a broader scope for the design of thiazolyl-containing drugs 7a and 7b . FTIR, 1H/13C NMR, LC–MS spectroscopy, and CHN elemental analyses were used to study the compound chemical structures. Using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on human periodontal ligament fibroblast (HPDLF) cells, the 4-hydrazinothiazole derivatives were screened for cytotoxicity in an in vitro cytotoxicity investigation. The 4-hydrazinothiazole compound 6b bearing an isopropylidene-hydrazino group demonstrated strongly potent cytotoxicity against CAKI1 (IC50 = 1.65 ± 0.24 μM) and A498 (IC50 of 0.85 ± 0.24 μM). Furthermore, the chloroacetyl-containing thiazole compound 7a displayed efficient inhibition of growth against the test cell lines CAKI1 and A498 at low micromolar concentrations, IC50 0.78 and 0.74 μM, respectively.  相似文献   

17.
Self-diffusion of water-soluble fullerene derivative (WSFD) C60[S(CH2)3SO3Na]5H in mouse red blood cells (RBC) was characterized by 1H pulsed field gradient NMR technique. It was found that a fraction of fullerene molecules (~13% of the fullerene derivative added in aqueous RBC suspension) shows a self-diffusion coefficient of (5.5 ± 0.8)·10−12 m2/s, which is matching the coefficient of the lateral diffusion of lipids in the erythrocyte membrane (DL = (5.4 ± 0.8)·10−12 m2/s). This experimental finding evidences the absorption of the fullerene derivative by RBC. Fullerene derivative molecules are also absorbed by RBC ghosts and phosphatidylcholine liposomes as manifested in self-diffusion coefficients of (7.9 ± 1.2)·10−12 m2/s and (7.7 ± 1.2)·10−12 m2/s, which are also close to the lateral diffusion coefficients of (6.5 ± 1.0)·10−12 m2/s and (8.5 ± 1.3)·10−12 m2/s, respectively. The obtained results suggest that fullerene derivative molecules are, probably, fixed on the RBC surface. The average residence time of the fullerene derivative molecule on RBC was estimated as 440 ± 70 ms. Thus, the pulsed field gradient NMR was shown to be a versatile technique for investigation of the interactions of the fullerene derivatives with blood cells providing essential information, which can be projected on their behavior in-vivo after intravenous administration while screening as potential drug candidates.  相似文献   

18.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

19.
Chromones and triazoles are groups of heterocyclic compounds widely known to exhibit a broad spectrum of biological activities. The combination of these two pharmacophores could result in multiple mechanisms of action to increase the potency of anticancer drugs and reduce their side effects. The in vitro antitumor effect of eight chromone-based compounds was evaluated in breast (T-47D and MDA-MB-231) and prostate (PC3) cancer cell lines, and in non-cancerous human mammary epithelial cells (HuMEC) using a resazurin-based method. Flow cytometry was used to evaluate the cell cycle and cell death, and ɣ-H2AX detection to identify DNA damage. The compounds showed selective cytotoxicity against cancer cell lines, with (E)-2-(2-(5-(4-methoxyphenyl)-2H-1,2,3-triazol-4-yl)vinyl)-4H-chromen-4-one (compound 2 a ) being more potent in non-metastatic T-47D cells (IC50 0.65 μM). Replacing the hydrogen by a methyl group on the triazole ring in compound 2 b enhanced the cytotoxic activity up to IC50 0.24 μM in PC3, 0.32 μM in MDA-MB-231 and 0.52 μM in T-47D. Compound 2 b was 3-fold more potent than doxorubicin in PC3 (IC50 0.73 μM) and 4-fold in MDA-MB-231 (IC50 1.51 μM). The addition of tetrahydroisoindole-1,3-dione moiety in compound 5 did not improve its effectiveness in any of the cell lines but it exerted the lowest cytotoxic effect in HuMEC (IC50 221.35 μM). The compounds revealed different cytotoxic mechanisms: 2 a and 2 b induced G2/M arrest, and compound 5 did not affect the cell cycle.  相似文献   

20.
A series of new quinoline derivatives of ursolic acid were designed and synthesized in an attempt to develop potential anticancer agents. The structures of these compounds were identified by 1H NMR, 13C NMR, IR and ESI-MS spectra analysis. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (MDA-MB-231, Hela and SMMC-7721). From the results, compounds 3ad displayed significant antitumor activity against three cancer cell lines. Especially, compound 3b was found to be the most potent derivative with IC50 values of 0.61 ± 0.07, 0.36 ± 0.05, 12.49 ± 0.08 μM against MDA-MB-231, HeLa and SMMC-7721 cells, respectively, stronger than positive control etoposide. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound 3b could significantly induce the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The cell cycle analysis also indicated that compound 3b could cause cell cycle arrest of MDA-MB-231 cells at G0/G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号