首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 5-nitrofuran–triazole conjugates were synthesized and evaluated for their antimicrobial activity against both Gram-positive and Gram-negative bacterial strains. All the compounds exhibited promising inhibition towards Gram-positive pathogenic strains, while mild inhibitory effects were observed towards Gram-negative bacterial strains. Some of the compounds 8a, 8b, 8e, 8f, 8h are most active among the series exhibiting MIC value of 1.17 μg/ml against different bacterial strains. The bactericidal activity is found to be in accordance with the bacterial growth inhibition data. Compound 8e was found to be equipotent to the standard drug Ciprofloxacin displaying MBC value of 1.17 μg/ml against the bacterial strain Bacillus subtilis. The compounds have also demonstrated promising antibacterial activity against the resistant strain MRSA and were found to be effective inhibitors of biofilm formation. The compound 8b exhibited excellent anti-biofilm activity with IC50 value as low as 0.8 μg/ml. These conjugates were also screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain. Compound 8e showed promising antitubercular activity with MIC value of 0.25 μg/ml. Most of these compounds are less toxic to normal mammalian cells than the widely used antibacterial drug Ciprofloxacin.  相似文献   

2.
Tuberculosis remains a global public health problem in recent years. To develop novel type of potential antitubercular agents, twelve novel dihydroartemisinin–fluoroquinolone (DHA–FQ) conjugates (three types of molecules) were gradually designed and conveniently synthesized. All the newly synthesized conjugates were well characterized and evaluated against different Mycobacterium tuberculosis strains in vitro. The screening results showed that five DHA–FQ conjugates were active toward M. tuberculosis H37Rv, and compound 3a exhibited the strongest inhibitory activity (MIC = 0.0625 μg/mL), which was comparable to the positive control Moxifloxacin and even stronger than Ofloxacin. Conjugates 2a and 3a also displayed comparable activities against various clinically isolated sensitive and resistant M. tuberculosis strains (MIC = 0.125–16 μg/mL) to Moxifloxacin. All target compounds possessed selective anti-M. tuberculosis ability. Preliminary structure–activity relationship demonstrated that short linker between DHA and FQ was favorable for strong antitubercular activity. This study provides a new clue for the development of novel antitubercular lead molecules.  相似文献   

3.
The host-defense peptide, esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30 CKISKQC) shows potent (MIC  6 μM) growth inhibitory activity against clinical isolates of multidrug-resistant strains of Staphylococcus aureus, Acinetobacter baumannii, and Stenotrophomonas maltophilia and differential cytotoxic activity against human erythrocytes (LC50 = 150 μM) and human non-small cell lung adenocarcinoma A549 cells (LC50 = 10 μM). Esculentin-2CHa significantly (P < 0.01) stimulates the release of the anti-inflammatory cytokine IL-10 by mouse lymphoid cells and elevates its production after stimulation with concanavalin A and significantly (P < 0.05) stimulates TNF-α production by peritoneal macrophages. Effects on IL-6 and IL-1β production were not significant. Removal of the hydrophobic N-terminal hexapeptide (GFSSIF) from esculentin-2CHa results in abolition of growth inhibitory activity against S. aureus and cytotoxic activity against erythrocytes and A549 cells as well as a marked (≥16-fold) reduction in potency against A. baumannii and S. maltophilia. The primary structure of esculentin-2 has been poorly conserved between frog species but evolutionary pressure has acted to maintain the hydrophobic character of this N-terminal hexapeptide sequence. Removal of the cyclic C-terminal domain (CKISKQC) and replacement of the Cys31 and Cys37 residues by serine resulted in appreciable decreases in cytotoxicity against all microorganisms and against mammalian cells. The more cationic [D20K, D27K] analog showed a modest increase in potency against all microorganisms (up to 4-fold) but a marked increase in cytotoxicity against erythrocytes (LC50 = 11 μM) and A549 cells (LC50 = 3 μM).  相似文献   

4.
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.  相似文献   

5.
Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.4 μg g−1 parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding a costunolide and parthenolide 3β-hydroxylase was identified opening up further options to improve the water solubility of parthenolide and therefore its potential as a drug.  相似文献   

6.
A series of 21 new amino alcohol fused spirochromone conjugates have been synthesized, characterized with analytical data and evaluated their antimycobacterial activity against Mycobacterium tuberculosis (virulent strain H37Rv) in vitro. Some of the compounds exerted significant inhibition, in particular, compound 4f found to be the most potent derivative exhibiting MIC = 3.13 μg/mL.  相似文献   

7.
We report the synthesis and screening of forty novel 4-nitropyrrole-semicarbazide conjugates inspired from the reported bio-potential of bromopyrrole alkaloids and semicarbazide derivatives for antimicrobial activity. Herein, hybrids 5k5o, 5r, 5s and 5t displayed four-fold increased activity (MIC = 0.39 μg/mL) against Escherichia coli compared to standard ciprofloxacin. Eight hybrids, 5k5o and 5r5t displayed equal antibacterial activity (MIC = 1.56 μg/mL) against Klebsiella pneumonia compared to standard ciprofloxacin. Hybrid, 5k5o (MIC = 0.195 μg/mL) displayed highly potent antibacterial activity against MSSA as compared to standard ciprofloxacin. Eight-fold superior activity was observed for four hybrids 5k5m and 5o (MIC = 0.39 μg/mL) against MRSA. Further, nine hybrids displayed four-fold superior antifungal activity (MIC = 0.78 μg/mL) compared to standard Amphotericin B. Encouraging MICs of these hybrids recognize them as promising leads for development of potential antimicrobial drugs.  相似文献   

8.
Background: An increase in immunoglobulin (Ig) A isotype directed against benzo(a)pyrene (BP) structure has previously been described in sera of cancer patients. In this study, new polycyclic aromatic hydrocarbon (PAH) conjugates were synthesized in order to more closely mimic the endogenous ligands of the cytosolic aryl hydrocarbon receptor (AhR). PAH [benzo(a)pyrene; 1,2-benzanthracene; dibenz[a,c]anthracene; 7,12-dimethylbenza[a]anthracene; benzo(ghi)perylene] were bound to protein carriers such as bovine serum albumin (BSA) via N-acetyl-cysteine (NAC). Methods: The levels of circulating antibodies (Abs) directed against PAH–NAC conjugates in the sera of cancer patients were evaluated using an Enzyme-Linked Immunosorbent Assay (ELISA) with these new conjugates. The avidity (IC50) and specificity of these circulating Abs were assessed via competition experiments. Results: An increase in Ig directed against these PAH–NAC conjugates was found in the sera of cancer patients, irrespective of the state and stage of the tumors. These Ig were principally of the A isotype. Sera from cancer patients had significantly higher optical density (OD) ranges than the controls, p < 0.0001. The ELISA test for breast cancer (n = 155) and ovarian cancer (n = 62) identified 82% and 92% of positive patients, respectively. The percentage positive in the control group (n = 60) was around 5%. Moreover, competition experiments with the different PAH–NAC conjugates and NAC–BSA revealed an estimated avidity of 10?6 M for the circulating IgA antibodies. Conclusions: The Abs discriminated between the different PAH–NAC conjugates and NAC–BSA. Therefore, these Abs recognize a carcinogenic PAH–NAC structure and not only a BP structure. These markers may be useful in the future for monitoring cancer evolution and recurrence.  相似文献   

9.
Our earlier research has shown that N-phenyl-2,2-dichloroacetamide analogues had much higher anti-cancer activity than the lead compound sodium dichloroacetate (DCA). In this current study, a variety of N-arylphenyl-2,2-dichloroacetamide analogues were synthesized via Suzuki coupling reaction and their anti-cancer activity was evaluated. The results showed that N-terphenyl-2,2-dichloroacetamide analogues had satisfactory anti-cancer activity. Among them, N-(3,5-bis(benzo[d][1,3]dioxol-5-yl)phenyl)-2,2-dichloroacetamide (6 k) had an IC50 of 2.40 μM against KB-3-1 cells, 1.04 μM against H460 cells and 1.73 μM against A549 cells.  相似文献   

10.
A series of optical amino acid diosgenyl esters and diosgenyl salicylate conjugates were designed and synthesized to develop new anticancer and anti-inflammatory agents. The analogue 9c that contains an 6-aminohexanoic acid residue at C-3 of diosgenin exhibits higher potency against all three tumor cell lines with IC50 values ranging from 4.7 μM in C26 cells to 14.6 μM in Hep G2 cells. In addition, seven of newly synthesized compounds significantly inhibit xylene-induced ear edema and exhibit comparable or better anti-inflammatory activities than those of diosgenin and aspirin. Furthermore, preliminary structure–activity relationship studies demonstrate that diosgenyl salicylate conjugates have stronger anti-inflammatory activities than amino acid diosgenyl esters.  相似文献   

11.
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin.  相似文献   

12.
The evaluation of the leishmanicidal and trypanocidal activity of the hydroalcoholic extract of the bark of Stryphnodendron rotundifolium Mart. (EHCSR) was carried out to find an alternative treatment for parasitic diseases. EHCSR was prepared and used at four different concentrations (1000, 500, 250, 125 μg/mL) in in vitro assays for activity against Leishmania promastigotes using the species Leishmania brasiliensis and Leishmania infantum and for trypanocidal activity using the epimastigotes of Trypanosoma cruzi. We also tested EHCSR for cytotoxicity against adhered cultured Murine J774 fibroblasts. The tests were performed in triplicate, and the percent mortality of parasites, IC50 and percent toxicity were determined. With regard to anti-leishmania activity against L. infantum, there was a mean mortality of 45% at all concentrations, and against L. brasiliensis, a substantial effect was seen at 1000 μg/mL with 56.38% mortality, where the IC50 values were 1338.76 and 987.35 μg/mL, respectively. Trypanocidal activity was notably high at 1000 μg/mL extract with 82.31% mortality of epimastigotes. Cytotoxicity at the highest extract concentrations of 500 and 1000 μg/mL was respectively 75.12% and 94.14%, with IC50 = 190.24 μg/mL. Despite that the extract has anti-parasitic activity, its substantial cytotoxicity against fibroblasts cells makes its systemic use nonviable as a therapeutic alternative.  相似文献   

13.
The present study describes the characterization and evaluation of novel anticancer conjugates, 2,6-diisopropylphenol–docosahexaenoate (PP–DHA), and its analogues including 2,4-diisopropylphenol–docosahexaenoate (DIPP–DHA), 2-isopropylphenol–docosahexaenoate (IPP–DHA), 2-cyclohexanephenol-docosahexaenoate (CHP–DHA) and phenol–docosahexaenoate (P–DHA) on breast cancer cell lines. Representative breast cancer cell lines, based on estrogen α receptor (ER) and oncogene Her-2 expression, were used and include MDA-MB-231 (ER-negative, Her-2-negative), MCF-7 (ER-positive, Her-2-negative) AU565 (ER-negative, Her-2-positive) and MDA-MB-361 (ER-positive, Her-2-positive). The PP–DHA conjugate significantly inhibited cell growth and induced cell loss in the breast cancer cell lines similarly; however, this conjugate was not effective against normal mammary epithelial cells. The effect of various conjugates were in PP–DHA > IPP–DHA > DIPP–DHA > CHP–DHA >> P–DHA order. PP–DHA and IPP–DHA conjugates were stable in human and mouse serum. Furthermore, the non-hydrolyzable amide-linked conjugate analogues affected breast cancer cells in a manner similar to that of the ester-linked conjugates. This suggests that ester-linked PP–DHA and IPP–DHA conjugates were stable during treatment to breast cancer cells due to structural hindrance. PP–DHA did not affect PPARα or PPARγ activities but its anticancer effects appear to be mediated in part though the inhibition of histone deacetylase (HDAC) activity. Further experiments are needed to confirm their molecular target and to test the effectiveness of these compounds in an in vivo model for their anticancer properties. In conclusion, these results suggest that the novel PP–DHA and IPP–DHA conjugates and their amide derivatives may be useful for the treatment of breast cancer.  相似文献   

14.
《Phytochemistry letters》2008,1(4):171-174
A series of eleven biflavonoids containing amentoflavone and hinokiflavone derivatives from the Indian medicinal herb Selaginella bryopteris has been investigated for their antiprotozoal activity using in vitro assays against the K1 strain of Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi. The highest antiprotozoal activity was displayed by 7,4′,7″-tri-O-methylamentoflavone which exhibited an IC50 of 0.26 μM. This compound showed no significant cytotoxicity (IC50 > 150 μM) evaluated using L-6 cells. The strongest activity against Leishmania was detected for 2,3-dihydrohinokiflavone (IC50 = 1.6 μM), whereas for Trypanosoma no significant activity was observed (IC50 > 12.5 μg/mL for the extract). To evaluate the in vivo activity against Plasmodium of the most active compound, trimethylated amentoflavones were obtained by partial synthesis starting from amentoflavone. The synthesized mixture of trimethylated amentoflavones did not show activity in the Plasmodium berghei mouse model against female NMRI mice at 50 mg/kg.  相似文献   

15.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

16.
Novel series of 3-substituted 2,6-difluorobenzamide derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their in vitro antibacterial activity against various phenotype of Gram-positive and Gram-negative bacteria, and their cell division inhibitory activity against three representative strains. As a result, 3-chloroalkoxy derivative 7, 3-bromoalkoxy derivative 12 and 3-alkyloxy derivative 17 were found to exhibit the best antibacterial activity against Bacillus subtilis with MICs of 0.25–1 μg/mL, and good activity (MIC < 10 μg/mL) against both susceptible and resistant Staphylococcus aureus. Additionally, all the three compounds displayed potent cell division inhibitory activity with MIC values of below 1 μg/mL against Bacillus subtilis and Staphylococcus aureus.  相似文献   

17.
A series of symmetric and asymmetric spermine (SPM) conjugates with all-trans-retinoic acid (ATRA), acitretin (ACI), (E)-3-(trioxsalen-4′-yl)acrylic acid (TRAA) and l-DOPA, amides of ACI, l-DOPA and TRAA with 1-aminobutane, benzylamine, dopamine and 1,12-diaminobutane as well as hybrid conjugates of O,O′-dimethylcaffeic acid (DMCA) with TRAA or N-fumaroyl-indole-3-carboxanilide (FICA) and 2-(2-aminoethoxy)ethanol were synthesized and their antioxidant properties were studied. The reducing activity (RA)% of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay and found to be in the range 0–92(20 min)%/96(60 min)% at 100 μM, the most powerful being the conjugates l-DOPA-SPM-l-DOPA (8, RA = 89%/96%) and l-DOPA-dopamine (13, RA = 92%/92%). Conjugate DMCA-NH(CH2CH2O)2-FICA (14) was the most powerful LOX inhibitor with IC50 33.5 μM, followed by the conjugates ACI-NHCH2Ph (10, IC50 40.5 μM), ACI-SPM-TRAA (7, IC50 41.5 μM), DMCA-NH(CH2CH2O)2-TRAA (15, IC50 65 μM), 13 (IC50 81.5 μM) and ACI-dopamine (11, IC50 87 μM). The most potent inhibitors of lipid peroxidation at 100 μM were the conjugates 15 (98%) and ACI-SPM-ACI (4, 97%) whereas all other compounds showed activities comparable or lower than trolox. The most interesting compounds, namely ATRA-SPM-ATRA (3), 4, 10, 11 and 15, as well as unconjugated compounds such as ATRA and dopamine, were studied for their anti-inflammatory activity in vivo on rat paw oedema induced by Carrageenan and found to exhibit, for doses of 0.01 mmol/mL of conjugates per Kg of rat body weight, weaker anti-inflammatory activities (3.6–40%) than indomethacin (47%) with conjugate 3 being the most potent (40%) in this series of compounds. The cytocompatibility of selected compounds was evaluated by the viability of RAMEC cells in the presence of different concentrations (0.5–50 μM) of the compounds. Conjugates 3 (IC50 2.6 μM) and 4 (IC50 4.7 μM) were more cytotoxic than the corresponding unconjugated retinoids ATRA (IC50 18.3 μM) and ACI (IC50 14.6 μM), whereas conjugate 15 (IC50 12.9 μM) was less cytotoxic than either DCSP (IC50 11.3 μM) or the tert-butyl ester of TRAA (IC50 2.9 μM).  相似文献   

18.
Thirty-six new α-benzylidene-γ-lactone compounds based α-methylene-γ-butyrolactone substructure were prepared and characterized by spectroscopic analysis. All compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi and the half maximal inhibitory concentration (IC50) against Botrytis cinerea and Colletotrichum lagenarium were investigated. Compounds 5c-3 and 5c-5 with the halogen atom exhibited excellent fungicidal activity against B. cinerea (IC50 = 22.91, 18.89 μM). The structure-activity relationships (SARs) analysis indicated that the derivatives with electron-withdrawing substituents at the meta- or para-positions improves the activity. Via the heuristic method, the generated quantitative structure-activity relationship (QSAR) model (R2 = 0.961) revealed a strong correlation of antifungal activity against B. cinerea with molecular structures of these compounds. Meanwhile, the cytotoxicity of 20 representative derivatives was tested in the human tumor cells line (HepG2) and the hepatic L02 cells line, the result indicated that the synthesized compounds showed significant inhibitory activity and limited selectivity. Compound 5c-5 has the highest fungicidal activity with IC50 = 18.89 μM (against B. cinerea.) but low cytotoxicity with IC50 = 35.4 μM (against HepG2 cell line) and IC50 = 68.8 μM (against Hepatic L02 cell line). These encouraging results can be providing an alternative, promising use of α-benzylidene-γ-lactone through the design and exploration of eco-friendly fungicides with low toxicity and high efficiency.  相似文献   

19.
A series of 4-aminoquinoline–triazine conjugates with different substitution pattern have been synthesized and evaluated for their in vitro antimalarial activity against chloroquine-sensitive and resistant strains of Plasmodium falciparum. Compounds 16, 19, 28 and 35 exhibited promising antimalarial activity against both strains of P. falciparum. Cytotoxicity of these compounds was tested against three cell lines. Several compounds did not show any cytotoxicity up to a high concentration (48 μM), others exhibited mild toxicities but selective index for antimalarial activity was high for most of these conjugates.  相似文献   

20.
A series of some novel 1,3,5-triazine–Schiff base conjugates (132) have been synthesized and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using Alamar Blue assay and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. Compounds 4 (4-Methoxy-6-methyl-N-(3,4,5-trimethoxybenzylidene)-1,3,5-triazin-2-amine), 11 (4-Methoxy-6-methyl-N-(2-hydroxy-3-bromo-5-chloro-benzylidene)-1,3,5-triazin-2-amine) and 24 (4-Methoxy-6-methyl-N-(1-(2,5-dihydroxyphenyl)ethylidene)-1,3,5-triazin-2-amine) exhibited a significant activity at 3.125, 6.25 and 6.25 μg/mL, respectively, when compared with the antitubercular drugs such as ethambutol (3.125 μg/mL), pyrazinamide (6.25 μg/mL) and streptomycin (6.25 μg/mL) and it could be a potential starting point to develop new lead compounds in the fight against Mycobacterium tuberculosis H37Rv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号