共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainer Machauer Kurt Laumen Siem Veenstra Jean-Michel Rondeau Marina Tintelnot-Blomley Claudia Betschart Anne-Lise Jaton Sandrine Desrayaud Matthias Staufenbiel Sabine Rabe Paolo Paganetti Ulf Neumann 《Bioorganic & medicinal chemistry letters》2009,19(5):1366-1370
The macrocyclic peptidic BACE-1 inhibitors 2a–c show moderate enzymatic and cellular activity. By exchange of the hydroxyethylene- to ethanolamine-transition state mimetic the peptidic character was reduced, providing the highly potent and selective inhibitor 3. Variation of the P′ moiety resulted in the macrocyclic inhibitor 14. Both macrocycles show inhibition of BACE-1 in the brain of APP51/16 transgenic mice, 3 (NB-544) after intravenous and 14 (NB-533) after oral application. 相似文献
2.
Zhou X Zhou J Li X Guo C Fang T Chen Z 《Biochemical and biophysical research communications》2011,(2):4947-275
Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury. 相似文献
3.
Background
Accumulation of amyloid β-peptide (Aβ) in the plaques is one of the major pathological features in Alzheimer's disease (AD). Sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE-1) and γ-secretase results in the formation of Aβ peptides. Preventing Aβ formation is believed to attenuate AD progression and BACE-1 and γ-secretase are thus attractive targets for AD drug development. 相似文献4.
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer’s disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD. 相似文献
5.
The production of amyloid-β (Aβ) is the key factor driving pathogenesis in Alzheimer's disease (AD). Increasing concentrations of Aβ within the brain cause synapse degeneration and the dementia that is characteristic of AD. Here the factors that affect the release of disease-relevant forms Aβ were studied in a cell model. 7PA2 cells expressing the human amyloid precursor protein released soluble Aβ oligomers that caused synapse damage in cultured neurons. Supernatants from 7PA2 cells treated with the cholesterol synthesis inhibitor squalestatin contained similar concentrations of Aβ42 to control cells but did not cause synapse damage in neuronal cultures. These supernatants contained reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers. Treatment of 7PA2 cells with platelet-activating factor (PAF) antagonists had similar effects; it reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. PAF activated cholesterol ester hydrolases (CEH), enzymes that released cholesterol from stores of cholesterol esters. Inhibition of CEH also reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. The Aβ monomers produced by treated cells protected neurons against Aβ oligomer-induced synapse damage. These studies indicate that pharmacological manipulation of cells can alter the ratio of Aβ monomer:oligomer released and consequently their effects on synapses. 相似文献
6.
Francielle Mina Clarissa M. Comim Diogo Dominguini Omar J. Cassol-Jr Dhébora M. Dall`Igna Gabriela K. Ferreira Milena C. Silva Leticia S. Galant Emílio L. Streck João Quevedo Felipe Dal-Pizzol 《Molecular neurobiology》2014,49(2):1069-1076
Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis and cognitive impairment. It's known that the IL-1β is one of the first cytokines to be altered. Thus, the objective of this study was to evaluate the role of IL-1β in cognitive parameters in brain tissue through the use of an IL-1β (IL-1ra) receptor antagonist up to 10 days and to assess blood–brain barrier permeability, cytokine levels, oxidative parameters and energetic metabolism up to 24 h, after sepsis induction. To this aim, we used sham-operated Wistar rats or submitted to the cecal ligation and perforation (CLP) procedure. Immediately after, the animals received one dose of 10 μg of IL-1ra. After 24 h, the rats were killed and were evaluated for biochemical parameters in the pre-frontal cortex, hippocampus and striatum. After 10 days, the animals were submitted to the habituation to the open field and step-down inhibitory avoidance task. We observed that the use of IL-1ra reverted the increase of blood–brain barrier permeability in the pre-frontal cortex, hippocampus and striatum; the increase of IL-1β, IL1-6 and TNF-α levels in the pre-frontal cortex and striatum; the decrease of complex I activity in the pre-frontal, hippocampus and striatum; the increase of oxidative parameters in pre-frontal cortex, hippocampus and striatum; and cognitive impairment. In conclusion, the results observed in this study reinforce the role of acute brain inflammatory response, in particular, the IL1β response, in the cognitive impairment associated with sepsis. 相似文献
7.
Dziegielewska KM Møller JE Potter AM Ek J Lane MA Saunders NR 《Cell and tissue research》2000,299(3):335-345
The nervous and the immune systems share several molecules that control their development and function. We studied the temporal and spatial distribution of the immunoreactivity of two acute-phase cytokines, TNF-alpha and IL-1beta, in the developing sheep neocortex and compared it with the well-described distribution of fetuin, a fetal glycoprotein also known to modulate the production of cytokines by lipopolysaccharide (LPS)-stimulated monocytes and macrophages. TNF-alpha was present first at embryonic day 30 (E30) (term is 150 days in sheep) as a faint band of immunoreactivity between the ventricular zone and the primordial plexiform layer (preplate). IL-1beta was detected at the first appearance of the cortical plate (E35-E40). Both cytokines were present on both sides of the cortical plate, which contained fetuin-positive cells, but was free from cytokine staining. By E60, TNF-alpha immunoreactivity was less prominent than that of IL-1beta and was confined to the marginal zone and outer developing white matter; IL-1beta was present in the marginal zone and in two bands of immunoreactive cells, one at the border of the cortical plate/developing layer VI (cells of neuronal morphology) and the other at the border of layer V and the developing white matter (identified as microglia). By E80, TNF-alpha staining had disappeared and IL-1beta-immunopositive microglia were no longer detectable. By E100-E140 only a few immunoreactive cells were identified in layers V-VI; these did not co-localize with fetuin-positive cells. The differences in distribution between fetuin and the two cytokines suggest that the opsonizing role of fetuin, proposed for monocyte production of cytokines, is probably not present in the developing brain. However, early in neocortical development TNF-alpha and IL-1beta were present in the subplate zone at a time of intense synaptogenesis. 相似文献
8.
Dominique Bonafoux Claudio Chuaqui P. Ann Boriack-Sjodin Chris Fitch Gretchen Hankins Serene Josiah Cheryl Black Gregg Hetu Leona Ling Wen-Cherng Lee 《Bioorganic & medicinal chemistry letters》2009,19(3):912-916
The 4-(5-fluoro-6-methyl-pyridin-2-yl)-5-quinoxalin-6-yl-1H-imidazol-2-ylamine 3 is a potent and selective inhibitor of TGF-βR1. Substitution of the amino group of 3 typically led to a slight decrease in the affinity for the receptor and in TGF-β-inducted PAI-luciferase reporter activity. However, 2-acetamidoimidazoles were identified as attractive candidates for further optimization as a result of their significant activity combined to their superior pharmacokinetic profile. 相似文献
9.
Zhiqiang?Xu Na?Xiao Yali?Chen Huang?Huang Charles?Marshall Junying?Gao Zhiyou?Cai Ting?Wu Gang?Hu Ming?Xiao
Background
Preventing or reducing amyloid-beta (Aβ) accumulation in the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Recent studies showed that the water channel aquaporin-4 (AQP4) mediates soluble Aβ clearance from the brain parenchyma along the paravascular pathway. However the direct evidence for roles of AQP4 in the pathophysiology of AD remains absent.Results
Here, we reported that the deletion of AQP4 exacerbated cognitive deficits of 12-moth old APP/PS1 mice, with increases in Aβ accumulation, cerebral amyloid angiopathy and loss of synaptic protein and brain-derived neurotrophic factor in the hippocampus and cortex. Furthermore, AQP4 deficiency increased atrophy of astrocytes with significant decreases in interleukin-1 beta and nonsignficant decreases in interleukin-6 and tumor necrosis factor-alpha in hippocampal and cerebral samples.Conclusions
These results suggest that AQP4 attenuates Aβ pathogenesis despite its potentially inflammatory side-effects, thus serving as a promising target for treating AD.10.
Background
Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer''s disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo.Methodology/Principal Findings
In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro.Conclusions/Significance
The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD. 相似文献11.
Rainer Machauer Siem Veenstra Jean-Michel Rondeau Marina Tintelnot-Blomley Claudia Betschart Ulf Neumann Paolo Paganetti 《Bioorganic & medicinal chemistry letters》2009,19(5):1361-1365
The hydroxyethylene octapeptide inhibitor OM99-2 served as starting point to create the tripeptide inhibitor 1 and its analogues 2a and b. An X-ray co-crystal structure of 1 with BACE-1 allowed the design and syntheses of a series of macrocyclic analogues 3a–h covalently linking the P1 and P3 side-chains. These inhibitors show improved enzymatic potency over their open-chain analogue. Inhibitor 3h also shows activity in a cellular system. 相似文献
12.
Upadhaya AR Lungrin I Yamaguchi H Fändrich M Thal DR 《Journal of cellular and molecular medicine》2012,16(2):287-295
Alzheimer's disease (AD) is characterized by the aggregation and deposition of amyloid β protein (Aβ) in the brain. Soluble Aβ oligomers are thought to be toxic. To investigate the predominant species of Aβ protein that may play a role in AD pathogenesis, we performed biochemical analysis of AD and control brains. Sucrose buffer-soluble brain lysates were characterized in native form using blue native (BN)-PAGE and also in denatured form using SDS-PAGE followed by Western blot analysis. BN-PAGE analysis revealed a high-molecular weight smear (>1000 kD) of Aβ(42) -positive material in the AD brain, whereas low-molecular weight and monomeric Aβ species were not detected. SDS-PAGE analysis, on the other hand, allowed the detection of prominent Aβ monomer and dimer bands in AD cases but not in controls. Immunoelectron microscopy of immunoprecipitated oligomers and protofibrils/fibrils showed spherical and protofibrillar Aβ-positive material, thereby confirming the presence of high-molecular weight Aβ (hiMWAβ) aggregates in the AD brain. In vitro analysis of synthetic Aβ(40) - and Aβ(42) preparations revealed Aβ fibrils, protofibrils, and hiMWAβ oligomers that were detectable at the electron microscopic level and after BN-PAGE. Further, BN-PAGE analysis exhibited a monomer band and less prominent low-molecular weight Aβ (loMWAβ) oligomers. In contrast, SDS-PAGE showed large amounts of loMWAβ but no hiMWAβ(40) and strikingly reduced levels of hiMWAβ(42) . These results indicate that hiMWAβ aggregates, particularly Aβ(42) species, are most prevalent in the soluble fraction of the AD brain. Thus, soluble hiMWAβ aggregates may play an important role in the pathogenesis of AD either independently or as a reservoir for release of loMWAβ oligomers. 相似文献
13.
Weijun Xu Gang Chen Weiliang Zhu Zhili Zuo 《Bioorganic & medicinal chemistry letters》2010,20(21):6203-6207
A similarity search on the structural analogs of an inhibitor of BACE-1 with IC50 2.8 μM, which contained a P1 benzothiazole group together with a triazine ring linked by a secondary amine group, was described in this Letter and some more potent inhibitors against BACE-1 were identified. The most potent compound 5 (IC50 = 0.12 μM) increases the inhibitory potency by 24 folds. Our results suggest that a pyrrolidinyl side group at the P3′ and P4′ of the inhibitors are favored for strong inhibition and a small aromatic group at the P4 position is also essential to the potency. 相似文献
14.
Wångsell F Nordeman P Sävmarker J Emanuelsson R Jansson K Lindberg J Rosenquist S Samuelsson B Larhed M 《Bioorganic & medicinal chemistry》2011,19(1):145-155
Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on ??-phenylnorstatine, ??-benzylnorstatine, iso-serine, and ??-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC50 = 0.19 ??M) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids. 相似文献
15.
Deliang Chen Zane S. Martin Claudio Soto Catherine H. Schein 《Bioorganic & medicinal chemistry》2009,17(14):5189-5197
Alzheimer’s disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-β protein (Aβ). Disease symptoms can be alleviated, in vitro and in vivo, by ‘β-sheet breaker’ pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related β-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Aβ. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Aβ aggregation at 2–3 μM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Aβ on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD. 相似文献
16.
Alzheimer's Disease (AD), the most common age-related neurodegenerative disorder, is characterized by progressive cognitive
decline, synaptic loss, the formation of extracellular β-amyloid plaques and intracellular neurofibrillary tangles, and neuronal
cell death. Despite the massive neuronal loss in the ‘late stage’ of disease, dendritic spine loss represents the best pathological
correlate to the cognitive impairment in AD patients. The ‘amyloid hypothesis’ of AD recognizes the Aβ peptide as the principal
player in the pathological process. Many lines of evidence point out to the neurotoxicity of Aβ, highlighting the correlation
between soluble Aβ oligomer accumulation, rather than insoluble Aβ fibrils and disease progression. Pathological increase
of Aβ in AD brains, resulting from an imbalance between its production, aggregation and clearance, might target mitochondrial
function promoting a progressive synaptic impairment. The knowledge of the exact mechanisms by which Aβ peptide impairs neuronal
function will help us to design new pharmacological tools for preventing AD neurodegeneration. 相似文献
17.
18.
19.
20.
Annular protofibrils (APFs) represent a new and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, evidence for their formation and relevance in vivo is lacking. Herein, we report that APFs are in a distinct pathway from fibril formation in vitro and in vivo. In human Alzheimer disease brain samples, amyloid-β APFs were associated with diffuse plaques, but not compact plaques; moreover, we show the formation of intracellular APFs. Our results together with previous studies suggest that the prevention of amyloid-β annular protofibril formation could be a relevant target for the prevention of amyloid-β toxicity in Alzheimer disease. 相似文献