首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel N-acylsulfonamide analogs were synthesized and evaluated for their binding affinity and antagonist activity for the EP3 receptor subtype. Representative compounds were also evaluated for their inhibitory effect on PGE2-induced uterine contraction in pregnant rats. Among those tested, a series of N-acylbenzenesulfonamide analogs were found to be more potent than the corresponding carboxylic acid analogs in both the in vitro and in vivo evaluations. The structure activity relationships (SAR) are also discussed.  相似文献   

2.
A series of 3-(2-aminocarbonyl-4-phenoxymethylphenyl)propanoic acid analogs were synthesized and evaluated for their EP3 antagonist activity in the presence of additive serum albumin. Several compounds were biologically evaluated for their in vivo efficacy with respect to the PGE2-induced uterine contraction in pregnant rats as well as their pharmacokinetics. The discovery process of these potent and selective EP3 antagonists and their structure activity relationship are also presented.  相似文献   

3.
A series of 3-[2-{[(3-methyl-1-phenylbutyl)amino]carbonyl}-4-(phenoxymethyl)phenyl]propanoic acid analogs were synthesized and evaluated for their in vitro potency. In most cases, introduction of one or two substituents into the two phenyl moieties resulted in the tendency of an increase or retention of in vitro activities. Several compounds, which showed excellent subtype selectivity, were evaluated for their inhibitory effect against PGE2-induced uterine contraction in pregnant rats, which is thought to be mediated by the EP3 receptor subtype. The structure–activity relationships (SARs) are also discussed.  相似文献   

4.
In vitro bromide release and in vivo glutathione (GSH) depletion in rat liver, kidney and testis by 1,2-dibromo-3-chloropropane (DBCP) and selectively methylated and deuterated DBCP analogs were studied. With liver microsomes from phenobarbital-pretreated rats the bromide release from the C1-C3-D4- and the perdeuterated DBCP analogs were 54% and 26% of that of DBCP, respectively. Inhibitors of P-450 reduced the bromide release to 10-20% of that without additions. This correlated with the effects of deuterium substitution and additions of P-450 inhibitors on DBCP-induced bacterial mutagenicity as reported elsewhere by this laboratory. To study the importance of GSH-dependent metabolism in DBCP toxicity, bromide release was assayed in cytosolic preparations using methylated analogs of DBCP. With the C1-methyl-derivative, bromide release was markedly reduced compared to that with DBCP in cytosols from liver, kidney and testis. A similar reduction in in vivo nephrotoxicity and testicular damage has recently been reported. The obtained correlation between in vitro GSH-dependent metabolism of methylated DBCP analogs and their in vivo organ damaging potential, points to an involvement of GSH-dependent metabolism in DBCP-induced in vivo toxicity. Both DBCP and the methylated analogs (360 mumol/kg i.p.) depleted the GSH levels in liver after 1 and 3 h and in kidney after 1 h, whereas in the testis no significant depletion of GSH was obtained. As kidney and testis are reported to be the primary target organs for DBCP, there was an apparent lack of correlation between tissue depletion of GSH and organ toxicity.  相似文献   

5.
A novel series of 17-modified and 2,17-modified analogs of 2-methoxyestradiol (2ME2) were synthesized and characterized. These analogs were designed to retain or potentiate the biological activities of 2ME2 and have diminished metabolic liability. The analogs were evaluated for antiproliferative activity against MDA-MB-231 breast tumor cells, antiangiogenic activity in HUVEC, and estrogenic activity on MCF-7 cell proliferation. Several analogs were evaluated for metabolic stability in human liver microsomes and in vivo in a rat cassette dosing model. This study lead to several 17-modified analogs of 2ME2 that have similar or improved antiproliferative and antiangiogenic activity, lack estrogenic properties and have improved metabolic stability compared to 2ME2.  相似文献   

6.
Zhu BT  Kosh JW  Fu J  Cai MX  Xu S  Conney AH 《Steroids》2000,65(9):521-527
In recent years, development of potent inhibitors for estrogen sulfatases has become an actively pursued strategy for chemoprevention and/or chemotherapy of estrogen-dependent human breast cancers. We report here our findings that pregnenolone 16alpha-carbonitrile (PCN) is a potent inhibitor of estrone-3-sulfatase activity of rats and also humans. PCN inhibited in a concentration-dependent manner the desulfation of estrone-3-sulfate catalyzed by liver microsomal and nuclear fractions of female Sprague-Dawley rats. The inhibition of estrone-3-sulfatase activity in these two subcellular fractions showed a biphasic pattern, with a highly sensitive phase seen at 78 nM to 1.25 microm of PCN followed by a markedly less-sensitive phase at > 2.5 microm of PCN. Interestingly, several of PCN's structural analogs without a 16alpha-nitrile group showed little or no inhibitory effect on rat liver microsomal E(1)-3-sulfatase activity. Double-reciprocal analysis showed that the inhibition of rat liver microsomal E(1)-3-sulfatase activity by PCN was essentially competitive in nature. When microsomes from six human term placentas were tested for their E(1)-3-sulfatase activity, PCN showed a similar biphasic inhibition of placental E(1)-3-sulfatase. Likewise, several of its structural analogs showed little or no inhibitory effect on placental E(1)-3-sulfatase activity. Computational analysis of the D-ring structure of PCN and other structurally similar analogs used in the study suggests that the potent sulfatase-inhibiting activity of PCN may be partly due to its unique steric orientation and size of the 16alpha-nitrile group. This knowledge may be useful for the rational design of more potent steroidal inhibitors of E(1)-3-sulfatase by introducing an additional nitrile group to their C16alpha-position.  相似文献   

7.
Cyanine compounds have previously shown excellent in vitro and promising in vivo antileishmanial efficacy, but the potential toxicity of these agents is a concern. A series of 22 analogs of thiazole orange ((Z)-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium salt), a commercial cyanine dye with antileishmanial activity, were synthesized in an effort to increase the selectivity of such compounds while maintaining efficacy. Cyanines possessing substitutions on the quinolinium ring system displayed potency against Leishmania donovani axenic amastigotes that differed little from the parent compound (IC50 12–42 nM), while ring disjunction analogs were both less potent and less toxic. Changes in DNA melting temperature were modest when synthetic oligonucleotides were incubated with selected analogs (ΔTm ≤ 5 °C), with ring disjunction analogs showing the least effect on this parameter. Despite the high antileishmanial potency of the target compounds, their toxicity and relatively flat SAR suggests that further information regarding the target(s) of these molecules is needed to aid their development as antileishmanials.  相似文献   

8.
Recent preclinical studies demonstrate a role for the prostaglandin E2 (PGE2) subtype 1 (EP1) receptor in mediating, at least in part, the pathophysiology of hypertension and diabetes mellitus. A series of amide and N-acylsulfonamide analogs of a previously described picolinic acid-based human EP1 receptor antagonist (7) were prepared. Each analog had improved selectivity at the mouse EP1 receptor over the mouse thromboxane receptor (TP). A subset of analogs gained affinity for the mouse PGE2 subtype 3 (EP3) receptor, another potential therapeutic target. One analog (17) possessed equal selectivity for EP1 and EP3, displayed a sufficient in vivo residence time in mice, and lacked the potential for acyl glucuronide formation common to compound 7. Treatment of mice with 17 significantly attenuated the vasopressor activity resulting from an acute infusion of EP1 and EP3 receptor agonists. Compound 17 represents a potentially novel therapeutic in the treatment of hypertension and diabetes mellitus.  相似文献   

9.
Oxidative damage may be one of the manifestations of cellular damage in the toxicity of ochratoxin A (OA). OA; its three natural analogs, OB, OC and Oα; and three synthetic analogs, the ethyl amide of OA (OE-OA), O-methylated OA (OM-OA), and the lactone-opened OA (OP-OA) were used to study free radical generation in hepatocytes, mitochondria and microsomes from rats. Electron paramagnetic resonance spectroscopy (EPR) using α-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN) as a spin trapping agent showed an enhanced free radical generation due to the addition of NADPH to the microsomes. An EPR signal was not observed in the mitochondria and hepatocyte samples when they were treated with a variety of agents. Addition of OM-OA together with NADPH and Fe3+ to the microsomes resulted in a strong EPR signal compared with the other analogs, whereas the signal could be quenched by the addition of catalase. OM-OA does not have a dissociable phenolate group and does not chelate Fe3+. The spin adduct hyperfine splitting constants indicated the presence of α-hydroxyethyl radicals resulting from generated hydroxyl radicals, which were trapped by 4-POBN. The results also suggested that the production of hydroxyl radicals by OA does not require a dissociable phenolate group or the prior formation of an OA-Fe complex.  相似文献   

10.
4-{[2-[(2-Furylsulfonyl)(isobutyl)amino]-5-(trifluoromethyl)phenoxy]methyl}benzoic acid analogs 2a and b and a series of the acid analogs, in which the carboxylic acid residue of 2b was replaced with various kinds of carboxylic acid bioisosteres, were synthesized and evaluated as EP1 receptor antagonists. Compound 2b and its monocyclic acid analogs, in which the carboxylic acid residue of 2b was replaced with monocyclic acid bioisosteres, were found to show potent EP1 receptor antagonist activity. Optimization of the linker Y between the phenyl moiety and the carboxylic acid residue of 2b was also carried out (Table 5). Compounds 2b and 16 and 17 possessing conformationally restricted linker Y were found to show the most optimized potency among the tested compounds. Cytochrome P450 inhibition of optimized compounds was also investigated. Details of the structure-activity relationship study are presented.  相似文献   

11.
The present study characterized in vitro metabolites of 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol (20(R)-25-OCH3-PPD) in mouse, rat, dog, monkey and human liver microsomes. 20(R)-25-OCH3-PPD was incubated with liver microsomes in the presence of NADPH. The reaction mixtures and the metabolites were identified on the basis of their mass profiles using LC-Q/TOF and were quantified using triple quadrupole instrument by multiple reaction monitoring. A total of 7 metabolites (M1–M7) of the phase I metabolites were detected in all species. 25(R)-OCH3-PPD was metabolized by hydroxylation, dehydrogenation, and O-demethylation. Enzyme kinetic of 20(R)-25-OCH3-PPD metabolism was evaluated in rat and human hepatic microsomes. Incubations studies with selective chemical inhibitors demonstrated that the metabolism of 20(R)-25-OCH3-PPD was primarily mediated by CYP3A4. We conclude that 20(R)-25-OCH3-PPD was metabolized extensively in mammalian species of mouse, rat, dog, monkey, and human. CYP3A4-catalyzed oxygenation metabolism played an important role in the disposition of 25(R)-OCH3-PPD, especially at the C-20 hydroxyl group.  相似文献   

12.
A series of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-dione (3) analogs structurally related to aplysinopsin, and that incorporate a variety of substituents in both the indole and N-benzyl moieties have been synthesized under microwave irradiation and conventional heating methods These analogs were evaluated for their anti-proliferative activity against MCF-7 and MDA-231 breast cancer cell lines, and A549 and H460 lung cancer cell lines. Two analogs, 3f and 3j had IC50 values of 4.4 and 5.2 μM, respectively, compared to 5-fluorouracil (IC50 = 15.2 μM) against MCF-7 cells.  相似文献   

13.
We describe an extensive SAR study in the 6-[4-fluoro-3-(substituted)benzyl]-4,5-dimethylpyridazin-3(2H)-one series which led to the identification of potent PARP-1 inhibitors, capable of inhibiting the proliferation of BRCA-1 deficient cancer cells in the low nanomolar range, and displaying >100-fold selectivity over the BRCA wild type counterparts. The series of compounds was devoid of hERG channel activity, and CYP inhibition and induction liabilities. Several analogs were stable in rat and human liver microsomes and displayed moderate rat clearance, with urinary excretion of parent as the major route of elimination.  相似文献   

14.
Liver microsomes from pregnant rabbits converted prostaglandins F2 alpha, E1, and E2 to their 20-hydroxy metabolites along with smaller amounts of the corresponding 19-hydroxy compounds. Prostaglandins E1 and E2 were also reduced to prostaglandins F1 alpha and F2 alpha, respectively, and prostaglandin E1 was isomerized to 8-isoprostaglandin E1. The above products were also identified after incubation of prostaglandins with liver microsomes from non-pregnant rabbits. In this case, the yield of 20-hydroxy metabolites was much lower. Thromboxane B2 and a number of prostaglandin F2 alpha analogs were also hydroxylated by lung and liver microsomes from pregnant rabbits. The relative rates of hydroxylation by lung microsomes were: prostaglandin E2 approximately prostaglandin F2 alpha approximately 16,16-dimethylprostaglandin F2 alpha approximately 13,14-didehydroprostaglandin F2 alpha greater than thromboxane B2 greater than 15-methylprostaglandin F2 alpha approximately 17-phenyl-18,19,-20-trinorprostaglandin F2 alpha approximately ent-13,14-didehydro-15-epiprostaglandin F2 alpha. Similar results were obtained with liver microsomes except that thromboxane B2 was a relatively poorer substrate for hydroxylation.  相似文献   

15.
omega-Oxidation with subsequent beta-oxidation from the omega-end is the major pathway for inactivation and degradation of leukotrienes. Oxidative degradation of leukotriene E4 (LTE4), N-acetyl-LTE4, and LTB4 was inhibited by the omega-trifluoro analogs of LTE4, omega-trifluoro-LTE4 (omega-F3-LTE4), and (1S,2R)-5-(3-[1-hydroxy-15,15,15-trifluoro-2-(2-1H- tetrazol-5-ylethyl-thio)pentadeca-3(E),5(Z)-dienyl+ ++]phenyl)-1H-tetrazole (LY 245769). The latter substance inhibited the oxidative degradation of LTE4 and N-acetyl-LTE4 in the rat in vivo by 50% at a dose of 7 mumol/kg body weight. In rat hepatocyte cultures both omega-trifluoro analogs interfered with the omega-oxidation of N-acetyl-LTE4 and LTB4 with IC50 values of about 4 microM. Both analogs inhibited the omega-hydroxylation in isolated rat liver microsomes with IC50 values between 16 and 37 microM. This inhibition is apparently competitive. In addition, in liver cytosol, the conversion of the omega-hydroxylated leukotrienes to omega-carboxy-LTE4 and omega-carboxy-LTB4 was inhibited by both compounds. omega-Trifluoro analogs of leukotrienes provide a new tool for interfering with the inactivation of leukotrienes in the omega-oxidation pathway.  相似文献   

16.
A series of linear pentamidine analogs exhibiting low cytotoxicity, active against Pneumocystis carinii, were evaluated for in vitro activities against bacterial and fungal strains. The majority of the tested bis-amidines exhibited marked activities against Gram-positive strains. In view of the fact that the highest potency was found for 1,5-bis(4-amidinophenoxy)-3-thiapentane dihydrochloride 1j with the S atom in the middle of the aliphatic linker, four new pentamidines bearing S atoms were synthesized and also evaluated against MRSA strains. N,N′-Dialkylated pentamidines with S atoms in the linker are the promising lead structures for antimicrobials development.  相似文献   

17.
Microsomes from etiolated wheat (Triticum aestivum L. cv Etoile de Choisy) shoots catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation of lauric acid predominantly at the subterminal or (ω-1) position (65%). Minor amounts of 10-hydroxy- (31%) and 9-hydroxylaurate (4%) were also formed. The reaction was catalyzed by cytochrome P-450, since enzyme activity was strongly inhibited by tetcyclacis, carbon monoxide, and antibodies against NADPH-cytochrome c (P-450)-reductase. The apparent Km for lauric acid was estimated to be 8.5 ± 2.0 μm. Seed treatment with the safener naphthalic acid anhydride or treatment of seedlings with phenobarbital increased cytochrome P-450 content and lauric acid hydroxylase (LAH) activity of the microsomes. A combination of both treatments further stimulated LAH activity. A series of radiolabeled unsaturated lauric acid analogs (8-, 9-, 10-, and 11-dodecenoic acids) was used to explore the regioselectivity and catalytic capabilities of induced wheat microsomes. It has been found that wheat microsomes catalyzed the reduced nicotinamide adenine dinucleotide phosphate-dependent epoxidation of sp2 carbons concurrently with hydroxylation at saturated positions. The regioselectivity of oxidation of the unsaturated substrates and that of lauric acid were similar. Preincubation of wheat microsomes with reduced nicotinamide adenine dinucleotide phosphate and 11-dodecenoic acid resulted in a partial loss of LAH activity.  相似文献   

18.
A series of (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (9a9m) and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (10a10i) derivatives that incorporate a variety of aromatic substituents in both the indole and N-benzyl moieties have been synthesized. These analogs were evaluated for their radiosensitization activity against the HT-29 cell line. Three analogs, 10a, 10b, and 10c were identified as the most potent radiosensitizing agents.  相似文献   

19.
A series of ageladine A analogs that include 2-aminoimidazo[4,5-c]azepines (seven-membered rings) and 2-amino-3H-imidazo[4,5-c]pyridine (six-membered rings) derivatives were synthesized and evaluated for their anticancer effects against several human cancer cell lines and MMP-2 inhibition in vitro. Only compounds possessing the aromatic azepine (seven-membered ring) core showed anticancer activity with IC50 values in the low micromolar range.  相似文献   

20.
A series of methyllycaconitine (1a, MLA) analogs was synthesized where the (S)-2-methylsuccinimidobenzoyl group in MLA was replaced with a (R)-2-methyl, 2,2-dimethyl-, 2,3-dimethyl, 2-phenyl-, and 2-cyclohexylsuccinimidobenzoyl (1b-f) group. The analogs 1b-f were evaluated for their inhibition of [(125)I]iodo-MLA binding at rat brain alpha7 nicotinic acetylcholine receptors (nAChR). In order to determine selectivity, MLA and the analogs 1b-f were evaluated for inhibition of binding to rat brain alpha,beta nAChR using [(3)H]epibatidine. At the alpha7 nAChR, MLA showed a K(i) value of 0.87 nM, analogs 1b-e possessed K(i) values of 1.67-2.16 nM, and 1f showed a K(i) value of 26.8 nM. Surprisingly, the analog 1e containing the large phenyl substituent (K(i)=1.67 nM) possessed the highest affinity. None of the compounds possessed appreciable affinity for alpha,beta nAChRs. MLA antagonized nicotine-induced seizures with an AD(50)=2 mg/kg. None of the MLA analogs were as potent as MLA in this assay. MLA and all of the MLA analogs, with the exception of 1b, antagonized nicotine's antinociceptive effects in the tail-flick assay. Compound 1c (K(i)=1.78 nM at alpha7 nAChR) with an AD(50) value of 1.8 mg/kg was 6.7 times more potent than MLA (AD(50)=12 mg/kg) in antagonizing nicotine's antinociceptive effects but was 5-fold less potent than MLA in blocking nicotine-induced seizures. Since MLA has been reported to show neuroprotection against beta-amyloid(1-42), these new analogs which have high alpha7 nAChR affinity and good selectivity relative to alpha,beta nAChRs will be useful biological tools for studying the effects of alpha7 nAChR antagonist and neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号