首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   

2.
Although a worldwide health problem, leishmaniasis is considered a highly neglected disease, lacking efficient and low toxic treatment. The efforts for new drug development are based on alternatives such as new uses for well-known drugs, in silico and synthetic studies and naturally derived compounds. Oleanolic acid (OA) is a pentacyclic triterpenoid widely distributed throughout the Plantae kingdom that displays several pharmacological activities. OA showed potent leishmancidal effects in different Leishmania species, both against promastigotes (IC50 L. braziliensis 30.47 ± 6.35 μM; IC50 L. amazonensis 40.46 ± 14.21 μM; IC50 L. infantum 65.93 ± 15.12 μM) and amastigotes (IC50 L. braziliensis 68.75 ± 16.55 μM; IC50 L. amazonensis 38.45 ± 12.05 μM; IC50 L. infantum 64.08 ± 23.52 μM), with low cytotoxicity against mouse peritoneal macrophages (CC50 235.80 ± 36.95 μM). Moreover, in silico studies performed to evaluate OA molecular properties and to elucidate the possible mechanism of action over the Leishmania enzyme sterol 14α-demethylase (CYP51) suggested that OA interacts efficiently with CYP51 and could inhibit the ergosterol synthesis pathway. Collectively, these data indicate that OA is a good candidate as leading compound for the development of a new leishmaniasis treatment.  相似文献   

3.
Peptidomic analysis of norepinephrine-stimulated skin secretions of the Orinoco lime tree frog Sphaenorhynchus lacteus (Hylidae, Hylinae) revealed the presence of three structurally related host-defense peptides with limited sequence similarity to frenatin 2 from Litoria infrafrenata (Hylidae, Pelodryadinae) and frenatin 2D from Discoglossus sardus (Alytidae). Frenatin 2.1S (GLVGTLLGHIGKAILG.NH2) and frenatin 2.2S (GLVGTLLGHIGKAILS.NH2) are C-terminally α-amidated but frenatin 2.3S (GLVGTLLGHIGKAILG) is not. Frenatin 2.1S and 2.2S show potent bactericidal activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MIC ≤16 μM) but are less active against a range of Gram-negative bacteria. Frenatin 2.1S (LC50 = 80 ± 6 μM) and 2.2S (LC50 = 75 ± 5 μM) are cytotoxic against non-small cell lung adenocarcinoma A549 cells but are less hemolytic against human erythrocytes (LC50 = 167 ± 8 μM for frenatin 2.1S and 169 ± 7 μM for 2.2S). Weak antimicrobial and cytotoxic potencies of frenatin 2.3S demonstrate the importance of C-terminal α-amidation for activity. Frenatin 2.1S and 2.2S significantly (P < 0.05) increased production of proinflammatory cytokines IL-1β and IL-23 by lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages and frenatin 2.1S also enhanced production of TNF-α. Effects on IL-6 production were not significant. Frenatin 2.2S significantly downregulated production of the anti-inflammatory cytokine IL-10 by LPS-stimulated cells. The data support speculation that frenatins act on skin macrophages to produce a cytokine-mediated stimulation of the adaptive immune system in response to invasion by microorganisms. They may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.  相似文献   

4.
We substituted a truncated neuropeptide Y (NPY) analog, [Pro30, Tyr32, Leu34]NPY(28-36)NH2 also called BVD15, at various positions with DOTA (1,4,7,10-tetraazacyclododecane-1,4,7-10-tetraacetic acid) and evaluated the effect of the coupling position with the binding affinity for NPY Y1 receptors (NPY1R). Our data suggest that [Lys(DOTA)4]BVD15 (Ki = 63 ± 25 nM vs. Ki = 39 ± 34 nM for BVD15) is a potent NPY analog suitable for radiolabeling with metallo positron emitters for PET imaging of breast cancer.  相似文献   

5.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

6.
Described is the synthesis of 5-hydroxytryptamine-tetramethylrhodamine (5HT1); an indole nitrogen linked fluorescent conjugate of serotonin. Through a series fluorescence quenching experiments and experiments in the presence of a known competitive antagonist (Granisetron), it was shown that 5HT1 specifically binds to purified homo-pentameric type-3 human serotonin receptors (5HT3A). The measured dissociation constant and Hill coefficient are Kd = 83 ± 3 nM and n = 3.1 ± 0.3, respectively which is indicative of multi-ligand binding and cooperativity similar to that of unconjugated serotonin.  相似文献   

7.
A novel series of analogs of 2-amino-dihydrotetrabenazine derivatives, 4–6, targeting the vesicular monoamine transporter have been prepared. In vitro binding was carried out in tissue homogenates prepared from rat striatal tissue homogenates with both [125I]-iodovinyl-TBZ and [3H]DTBZ. There was a good correlation (r2 = 0.925) between the affinities of the different compounds for [125I]-iodovinyl-TBZ and [3H]-DTBZ binding. Compound 5 exhibited a better affinity for the vesicular monoamine transporter (Ki = 8.68 ± 1.26 nM and 7.01 ± 0.07 nM, respectively), which may be a good lead compound for further structural modification to develop useful probes for VMAT2.  相似文献   

8.
A putative aldehyde reductase gene from Oceanospirillum sp. MED92 was overexpressed in Escherichia coli. The recombinant protein (OsAR) was characterized as a monomeric NADPH-dependent aldehyde reductase. The kinetic parameters Km and kcat of OsAR were 0.89 ± 0.08 mM and 11.07 ± 0.99 s−1 for benzaldehyde, 0.04 ± 0.01 mM and 6.05 ± 1.56 s−1 for NADPH, respectively. This enzyme exhibited high activity toward a variety of aromatic and aliphatic aldehydes, but no activity toward ketones. As such, it catalyzed the chemoselective reduction of aldehydes in the presence of ketones, as demonstrated by the reduction of 4-acetylbenzaldehyde or the mixture of hexanal and 2-nonanone, showing the application potential of this marine enzyme in such selective reduction of synthetic importance.  相似文献   

9.
In this study, a series of novel bromophenols were synthesized from benzoic acids and methoxylated bromophenols. The synthesized compounds were evaluated by using different bioanalytical antioxidant assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) radical scavenging assays. Also, reducing power of novel bromophenols were evaluated by Cu2+-Cu+ reducing, Fe3+-Fe2+ reducing and [Fe3+-(TPTZ)2]3+-[Fe2+-(TPTZ)2]2+ reducing and ferrous ions (Fe2+) chelating abilities. The compounds demonstrate powerful antioxidant activities when compared to standard antioxidant molecules of α-tocopherol, trolox, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT). Also in the last part of this studies novel bromophenols were tested against some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II (hCA I and hCA II) isoenzymes. The newly synthesized bromophenols showed Ki values in a range of 6.78 ± 0.68 to 126.07 ± 35.6 nM against hCA I, 4.32 ± 0.23 to 72.25 ± 12.94 nM against hCA II, 4.60 ± 1.15 to 38.13 ± 5.91 nM against AChE and 7.36 ± 1.31 to 29.38 ± 3.68 nM against BChE.  相似文献   

10.
Hyperuricemia is related to a variety of pathologies, including chronic kidney disease (CKD). However, the pathophysiological mechanisms underlying disease development are not yet fully elucidated. Here, we studied the effect of hyperuricemia on tryptophan metabolism and the potential role herein of two important uric acid efflux transporters, multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Hyperuricemia was induced in mice by treatment with the uricase inhibitor oxonic acid, confirmed by the presence of urate crystals in the urine of treated animals. A transport assay, using membrane vesicles of cells overexpressing the transporters, revealed that uric acid inhibited substrate-specific transport by BCRP at clinically relevant concentrations (calculated IC50 value: 365 ± 13 μM), as was previously reported for MRP4. Moreover, we identified kynurenic acid as a novel substrate for MRP4 and BCRP. This finding was corroborated by increased plasma levels of kynurenic acid observed in Mrp4?/? (107 ± 19 nM; P = 0.145) and Bcrp?/? mice (133 ± 10 nM; P = 0.0007) compared to wild type animals (71 ± 11 nM). Hyperuricemia was associated with > 1.5 fold increase in plasma kynurenine levels in all strains. Moreover, hyperuricemia led to elevated plasma kynurenic acid levels (128 ± 13 nM, P = 0.005) in wild type mice but did not further increase kynurenic acid levels in knockout mice. Based on our results, we postulate that elevated uric acid levels hamper MRP4 and BCRP functioning, thereby promoting the retention of other potentially toxic substrates, including kynurenic acid, which could contribute to the development of CKD.  相似文献   

11.
A cDNA encoding farnesyl pyrophosphate synthase of Babesia bovis (BbFPPS) has been isolated, cloned and characterized as molecular drug target. Sequence analysis revealed that BbFPPS contains an open reading frame of 1011 bp with predicted 336 amino acids and molecular mass of 38 kDa. Antiserum raised in mice against recombinant BbFPPS expressed in Escherichia coli specifically reacted with native protein of B. bovis parasites by Western blot analysis and indirect immunofluorescent test. Enzymatic assay using recombinant BbFPPS revealed that the Km value of the enzyme for isopentenyl pyrophosphate and dimethylallyl pyrophosphate was 2.494 ± 1.536 μM. Risedronate inhibited the activity of BbFPPS yielding IC50 value of 8.4 ± 1.2 nM. Furthermore, the in vitro growth of B. bovis was significantly inhibited in the presence of a micromolar concentration of risedronate (IC50 = 4.02 ± 0.91 μM). No regrowth of B. bovis was observed at 10 μM of risedronate in the subsequent viability test. These results demonstrate that BbFPPS is the molecular target of risedronate, which could inhibit the in vitro growth of B. bovis.  相似文献   

12.
The inosine monophosphate dehydrogenase (IMPDH) enzyme has been characterized and validated as a molecular drug target in other apicomplexans but not in the genus Babesia. Subsequently, we cloned and expressed a Babesia gibsoni IMPDH (BgIMPDH) cDNA in Escherichia coli. We also determined the inhibitory effect of mycophenolic acid (MPA) on recombinant BgIMPDH (rBgIMPDH) activity and the Babesia-growths in vitro. The translated BgIMPDH peptide contained thirteen amino acid residues responsible for substrate and cofactor binding in its catalytic domain with Gly374 in BgIMPDH being replaced by Ser388 in mammalian IMPDH. The native BgIMPDH enzyme in the parasite was approximately 54-kDa a mass similar to His-tag rBgIMPDH protein. The Km values of the rBgIMPDH were 8.18 ± 0.878 (mean ± standard error of the mean) μM and 360.80 ± 43.41 μM for IMP and NAD+, respectively. MPA inhibited the rBgIMPDH activity yielding a Ki value of 20.93 ± 1.83 μM with respect to NAD+. For Babesia growths, the IC50s were 0.95 ± 0.21 and 2.88 ± 0.49 μM for B. gibsoni and B. bovis, respectively. Therefore, our results suggest that MPA may inhibit the replication of Babesia parasites by targeting IMPDH enzyme of the purine pathway.  相似文献   

13.
Two nemadectin congeners 1 and 2 were isolated from the fermentation broth of a mutant strain (Y-3) of Streptomyces microflavus neau3. Their structures were determined on the basis of extensive spectroscopic analysis and comparison with data from the literature. Compound 2 possessed a 5-membered ring lactone that is unprecedented among known milbemycins and avermectins. Both compounds 1 and 2 exhibited potent acaricidal activity and nematocidal activity. Especially, compound 2 demonstrated impressive acaricidal activity against adult mites with an IC50 of 2.3 ± 0.9 μg/mL and mite eggs with an IC50 of 17.5 ± 2.1 μg/mL and nematocidal activity against Caenorhabditis elegans with an IC50 of 0.7 ± 0.2 μg/mL, which are higher than those of nemadectin and the known commercial acaricide and nematocide milbemycin A3/A4.  相似文献   

14.
《Aquatic Botany》2007,87(1):43-48
CH4 and CO2 fluxes across the water–atmosphere interface were measured over a 24 h day–night cycle in a shallow oxbow lake colonized by the water chestnut (Trapa natans L.) (Lanca di Po, Northern Italy). Only exchanges mediated by macrophytes were measured, whilst gas ebullition was not considered in this study. Measurements were performed from 29 to 30 July 2005 with short incubations, when T. natans stands covered the whole basin surface with a mean dry biomass of 504 ± 91 g m−2. Overall, the oxbow lake resulted net heterotrophic with plant and microbial respiration largely exceeding carbon fixation by photosynthesis. The water chestnut stand was a net sink of CO2 during the day-light period (−60.5 ± 8.5 mmol m−2 d−1) but it was a net source at night (207.6 ± 6.1 mmol m−2 d−1), when the greatest CO2 efflux rate was measured across the water surface (28.2 ± 2.4 mmol m−2 h−1). The highest CH4 effluxes (6.6 ± 1.8 mmol m−2 h−1) were determined in the T. natans stand during day-time, whilst CH4 emissions across the plant-free water surface were greatest at night (6.8 ± 2.1 mmol m−2 h−1). Therefore, we assumed that the water chestnut enhanced methane delivery to the atmosphere. On a daily basis, the oxbow lake was a net source to the atmosphere of both CO2 (147.1 ± 10.8 mmol m−2 d−1) and CH4 (116.3 ± 8.0 mmol m−2 d−1).  相似文献   

15.
Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC–MS using their 15N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC–MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0–4 °C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50 °C). Potassium ferricyanide (K3Fe(CN)6) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC–MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486 ± 280 nM in whole blood, 672 ± 496 nM in plasma (CP), and 620 ± 350 nM in erythrocytes (CE). The CE-to-CP ratio was 0.993 ± 0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC–MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood compartments under basal conditions and during hyperemia.  相似文献   

16.
17.
《Process Biochemistry》2010,45(6):835-840
Horseradish peroxidase is used in many biotechnological fields including diagnostics, biocatalysts and biosensors. Horseradish peroxidase isozyme C (HRPC) was extracellularly expressed in Spodoptera frugiperda Sf9 cell culture and in intact larvae. At day 6 post-infection, the concentration of active HRPC in suspension cultures was 3.0 ± 0.1 μg per 1 × 106 cells or 3.0 ± 0.1 mg l−1 with a multiplicity of infection of 1 in the presence of 7.2 μM hemin. Similar yields were obtained in monolayer cultures. In larvae, the HRPC expression level was 137 ± 17 mg HRPC kg−1 larvae at day 6 post-infection with a single larvae thus producing approximately 41 μg HRPC. The whole larval extract was separated by ion exchange chromatography and HRPC was purified in a single step with a yield of 75% and a purification factor of 117. The molecular weight of recombinant HRPC was 44,016 Da, and its glycosylation pattern agreed with that expected for invertebrates. The Km and Vmax were 12.1 ± 1.7 mM and 2673 ± 113 U mg−1, respectively, similar to those of HRP purified from Armoracia rusticana roots. The method described in this study, based on overexpression of HRPC in S. frugiperda larvae, is a simple and inexpensive way to obtain high levels of active enzyme for research and other biotechnological applications.  相似文献   

18.
Polyphosphate (polyP), synthesized by polyP kinase (PPK) using the terminal phosphate of ATP as substrate, performs important functions in every living cell. The present work reports on the relationship between polyP metabolism and bioinsecticide production in Bacillus thuringiensis subsp. israelensis (Bti). The ppk gene of Bti was cloned into vector pHT315 and the effect of its overexpression on endotoxin production was determined. Endotoxin production by the recombinant strain was found to be consistently higher than that by the wild type strain and the strain that carried the empty plasmid. The toxicity of the recombinant mutant strain (LC50 5.8 ± 0.6 ng ml?1) against late 2nd instar Culex quinquefasciatus was about 7.7 times higher than that of Bti (LC50 44.9 ± 7 ng ml?1). To our knowledge this is the first reported study which relates polyP metabolism with bioinsecticide biosynthesis.  相似文献   

19.
The spider venom peptide Huwentoxin-IV (HwTx-IV) 1 is a potent antagonist of hNav1.7 (IC50 determined herein as 17 ± 2 nM). Nav1.7 is a voltage-gated sodium channel involved in the generation and conduction of neuropathic and nociceptive pain signals. We prepared a number of HwTx-IV analogs as part of a structure–function study into Nav1.7 antagonism. The inhibitory potency of these analogs was determined by automated electrophysiology and is reported herein. In particular, the native residues Glu1, Glu4, Phe6 and Tyr33 were revealed as important activity modulators and several peptides bearing mutations in these positions showed significantly increased potency on hNav1.7 while maintaining the original selectivity profile of the wild-type peptide 1 on hNav1.5. Peptide 47 (Gly1, Gly4, Trp33-HwTx) demonstrated the largest potency increase on hNav1.7 (IC50 0.4 ± 0.1 nM).  相似文献   

20.
Two l-nucleosides, l-3′-amino-3′-deoxy-N6-dimethyladenosine (l-3′-ADMdA) 1, previously synthesized in our laboratory, and the novel l-3′-amino-3′-deoxy-N6-methyladenosine-5′-N-methyluronamide (l-3′-AM-MECA) 2 were evaluated in an ischemia/reperfusion model on Langendorff perfused mouse heart. l-3′-ADMdA 1 was found to enhance functional recovery from ischemia (32.2 ± 3.7 cm H2O/s % rate pressure product, compared to 21.3 ± 1.4 for the control and 30.7 ± 3.4 for adenosine) and increase the time to onset of ischemic contracture (14.5 ± 0.9 min, compared to 10.5 ± 1.0 min for the control and 13.6 ± 0.6 min for adenosine) comparable to adenosine. Consistent with the functional recovery data, decreased infarction area was seen in the case of 1 (19.1 ± 8.4, compared to 40.5 ± 7.2% for the control and 11.5 ± 2.1% for adenosine). In contrast, l-3′-AM-MECA 2 did not show significant functional recovery, increased onset of contracture, nor decreased infarction area compared to control. Unlike adenosine, neither 1 nor 2 induced cardiac standstill in mouse heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号