首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Follicle-stimulating hormone (FSH), acting on its receptor (FSHR), plays a pivotal role in the stimulation of follicular development and maturation. Multiple injections of protein formulations are used during clinical protocols for ovulation induction and for in vitro fertilization that are followed by a selection of assisted reproductive technologies. In order to increase patient convenience and compliance several research groups have searched for orally bioavailable FSH mimetics for innovative fertility medicines. We report here the discovery of a series of substituted benzamides as positive allosteric modulators (PAM) targeting FSHR. Optimization of this series has led to enhanced activity in primary rat granulosa cells, as well as remarkable selectivity against the closely related luteinizing hormone receptor (LHR) and thyroid stimulating hormone receptor (TSHR). Two modulators, 9j and 9k, showed promising in vitro and pharmacokinetic profiles.  相似文献   

2.
Positive modulation of the muscarinic M1-receptor has for a long time attracted scientists and drug developers for the potential treatment of Alzheimer’s disease or Schizophrenia. The precognitive potential of M1 activation has however not been clinically demonstrated as a result of side effects associated both with agonists and positive allosteric modulators (PAM’s) of the M1-receptor. To avoid excessive activation of the M1-receptor we have designed a new screening format and developed the first low-shift positive allosteric modulators for the M1 receptor. Low-shift PAM’s offer the potential of “use-dependent” attenuation of transmitter-signaling while avoiding pseudo-agonistic behavior in vivo as a common limitation of the so far described high-shift PAM’s. With these novel M1-PAM’s, the M1 receptor is potentially the first GPCR for which both, high- and low shift PAM’s have become available.  相似文献   

3.
Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.  相似文献   

4.
We report the optimization of a series of novel metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from a 5,6-bicyclic class of dihydropyrazolo[1,5-a]pyridin-4(5H)-ones containing a phenoxymethyl linker. Studies focused on a survey of non-amide containing hydrogen bond accepting (HBA) pharmacophore replacements. A highly potent and selective PAM, 2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyridin-4(5H)-one (11, VU0462054), bearing a simple ketone moiety, was identified (LE = 0.52, LELP = 3.2). In addition, hydroxyl, difluoro, ether, and amino variations were examined. Despite promising lead properties and exploration of alternative core heterocycles, linkers, and ketone replacements, oxidative metabolism and in vivo clearance remained problematic for the series.  相似文献   

5.
Pyrazolopyrimidines were discovered as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. In addition to its intrinsic activity, compound 9n significantly enhances nicotinic acid binding to the receptor, thereby potentiating the functional efficacy of nicotinic acid.  相似文献   

6.
Synthesis and SAR of para-alkylthiophenoxyacetic acids is described. Achiral compounds 30, 31 and 32 were identified as potent and selective PPARδ agonists.  相似文献   

7.
A series of metabotropic glutamate 5 receptor (mGluR5) allosteric ligands with positive, negative or no modulatory efficacy is described. The ability of this series to yield both mGluR5 PAMs and NAMs with single-digit nanomolar potency is unusual, and the underlying SAR is detailed.  相似文献   

8.
Development of SAR in a 5-aryl-3-acylpyridinyl-pyrazoles and 1-aryl-4-acylpyridinyl imidazoles series of mGlu5 receptor negative allosteric modulators (mGluR5 NAMs) using a functional cell-based assay is described in this Letter. Analysis of the Ligand-lipophilic efficiency (LipE) of compounds provided new insight for the design of potent mGluR5 negative allosteric modulators with anti-depressant activities.  相似文献   

9.
A novel facile synthesis led to pyridine-2-one target structures of which first series with varying substituents have been yielded and biologically characterized as novel multidrug resistance (MDR) modulators inhibiting P-glycoprotein (P-gp). Structure-activity relationships prove a dependency of the MDR-modulating properties from the kind and positioning of hydrogen bond acceptor functions within the molecular skeleton. Cyano functions turned out as biologically effective substituents for a potential hydrogen bonding to the protein target structure.  相似文献   

10.
We have recently reported the discovery of a novel class of glucocorticoid receptor (GR) antagonists, exemplified by 3, containing a 1,2-dihydroquinoline molecular scaffold. Further SAR studies of these antagonists uncovered chemical modifications conveying agonist functional activity to this series. These agonists exhibit good GR binding affinity and are selective against other nuclear hormone receptors.  相似文献   

11.
Seven transmembrane receptors (7TMRs) are proteins that convey signals through changes in conformation. These conformations are stabilized by external molecules (i.e. agonists, antagonists, modulators) and act upon other bodies (termed ‘guests’) which can be other molecules in the extracellular space, or proteins along the plane of the membrane (receptor oligomerization) or signaling proteins in the cytosol (i.e. G protein, β-arrestin). These elements comprise allosteric systems and a great deal of 7TMR pharmacology can be considered in terms of allosteric behavior. Allosteric ligands acting on 7TMRs possess four unique behaviors that can be valuable therapeutically; () the ability to alter the interaction of very large proteins, () probe dependence, () saturable effect, and () induction of separate changes in affinity and efficacy of other ligands. Two of these behaviors (namely probe dependence for CCR5-based HIV-1 entry inhibitors and functional selectivity for biased agonism) will be highlighted with examples.  相似文献   

12.
SAR study of the piperidine moiety in a series of quinolizidinone carboxylic acid M1 positive allosteric modulators was examined. While the SAR was generally flat, compounds were identified with high CNS exposure to warrant additional in vivo evaluation.  相似文献   

13.
This article describes the discovery of aryl hydroxy pyrimidinones and the medicinal chemistry efforts to optimize this chemotype for potent APJ agonism. APJ is a G-protein coupled receptor whose natural agonist peptide, apelin, displays hemodynamic improvement in the cardiac function of heart failure patients. A high throughput screen was undertaken to identify small molecule hits that could be optimized to mimic the apelin in vitro response. A potent and low molecular weight aryl hydroxy pyrimidinone analog 30 was identified through optimization of an HTS hit and medicinal chemistry efforts to improve its properties.  相似文献   

14.
This letter describes the synthesis and SAR, developed through an iterative analogue library approach, of an mGluR4 positive allosteric modulator lead based on a pyrazolo[3,4-d]pyrimidine scaffold. Despite tremendous therapeutic potential, Compound 7, VU0080421, and related congeners represent only a handful of mGluR4 positive allosteric modulators ever described.  相似文献   

15.
AMPA receptors (AMPARs) are an increasingly important therapeutic target in the CNS. Aniracetam, the first identified potentiator of AMPARs, led to the rigid and more potent CX614. This lead molecule was optimized in order to increase affinity towards the AMPA receptor. The substitution of the dioxine with a benzoxazinone ring system increased the activity and allowed further investigation of the sidechain SAR.  相似文献   

16.
The discovery, synthesis and SAR of a novel series of 3-benzyl-1,3-oxazolidin-2-ones as positive allosteric modulators (PAMs) of mGluR2 is described. Expedient hit-to-lead work on a single HTS hit led to the identification of a ligand-efficient and structurally attractive series of mGluR2 PAMs. Human microsomal clearance and suboptimal physicochemical properties of the initial lead were improved to give potent, metabolically stable and orally available mGluR2 PAMs.  相似文献   

17.
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [(35)S]guanosine 5'-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.  相似文献   

18.
L B Kier  R A Glennon 《Life sciences》1978,22(18):1589-1593
The structure-activity relationships of a series of psychotomimetic phenethylamine and phenylisopropylamine analogs were examined using a molecular connectivity analysis. Greater than 90% of the variance in their activity as serotonin agonists in a model system can be explained on this basis.  相似文献   

19.
AMPA receptors (AMPARs) are an important therapeutic target in the CNS. A series of substituted benzoxazinone derivatives with good to very good in vitro activity as positive allosteric AMPAR modulators was synthesized and evaluated. The appropriate substituent choice on the benzoxazinone fragment improved the affinity towards the AMPA receptor significantly in comparison to our lead molecule CX614.  相似文献   

20.
The M3 muscarinic acetylcholine receptor (mAChR) is a member of the family of mAChRs, which are associated with a variety of physiological functions including the contraction of various smooth muscle tissues, stimulation of glandular secretion, and regulation of a range of cholinergic processes in the central nerve system. We report here the discovery and a comprehensive structure­-activity relationships (SARs) study of novel positive allosteric modulators (PAMs) of the M3 mAChR through a high throughput screening (HTS) campaign. Compound 9 exhibited potent in vitro PAM activity towards the M3 mAChR and significant enhancement of muscle contraction in a concentration-dependent manner when applied to isolated smooth muscle strips of rat bladder. Compound 9 also showed excellent subtype selectivity over other subtypes of mAChRs including M1, M2, and M4 mAChRs, and moderate selectivity over the M5 mAChR, indicating that compound 9 is an M3-preferring M3/M5 dual PAM. Moreover, compound 9 displayed acceptable pharmacokinetics profiles after oral dosing to rats. These results suggest that compound 9 may be a promising chemical probe for the M3 mAChR for further investigation of its pharmacological function both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号