首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2′-deoxyuridine-5′-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix–loop–helix domain on the protein surface was identified as the putative RNA-binding site.  相似文献   

2.
Thymidylate synthase (TS) is a well-validated cancer target that undergoes conformational switching between active and inactive states. Two mutant human TS (hTS) proteins are predicted from crystal structures to be stabilized in an inactive conformation to differing extents, with M190K populating the inactive conformation to a greater extent than A191K. Studies of intrinsic fluorescence and circular dichroism revealed that the structures of the mutants differ from those of hTS. Inclusion of the substrate dUMP was without effect on M190K but induced structural changes in A191K that are unique, relative to hTS. The effect of strong stabilization in an inactive conformation on protein phosphorylation by casein kinase 2 (CK2) was investigated. M190K was highly phosphorylated by CK2 relative to an active-stabilized mutant, R163K hTS. dUMP had no detectable effect on phosphorylation of M190K; however, dUMP inhibited phosphorylation of hTS and R163K. Studies of temperature dependence of catalysis revealed that the E(act) and temperature optimum are higher for A191K than hTS. The potency of the active-site inhibitor, raltitrexed, was lower for A191K than hTS. The response of A191K to the allosteric inhibitor, propylene diphosphonate (PDPA) was concentration dependent. Mixed inhibition was observed at low concentrations; at higher concentrations, A191K exhibited nonhyperbolic behavior with respect to dUMP and inhibition of catalysis was reversed by substrate saturation. In summary, inactive-stabilized mutants differ from hTS in thermal stability and response to substrates and PDPA. Importantly, phosphorylation of hTS by CK2 is selective for the inactive conformation, providing the first indication of physiological relevance for conformational switching.  相似文献   

3.
We have described previously that, during S-phase, human DNA ligase I is phosphorylated on Ser66, a casein kinase II site. Here we investigate the phosphorylation status of DNA ligase I during the cell cycle by gel shift analysis and electrospray mass spectrometry. We show that three residues (Ser51, Ser76, and Ser91), which are part of cyclin-dependent kinase sites, are phosphorylated in a cell cycle-dependent manner. Phosphorylation of Ser91 occurs at G1/S transition and depends on a cyclin binding site in the C-terminal part of the protein. This modification is required for the ensuing phosphorylation of Ser76 detectable in G2/M extracts. The substitution of serines at positions 51, 66, 76, and 91 with aspartic acid to mimic the phosphorylated enzyme hampers the association of DNA ligase I with the replication foci. We suggest that the phosphorylation of DNA ligase I and possibly other replicative enzymes is part of the mechanism that directs the disassembly of the replication machinery at the completion of S-phase.  相似文献   

4.
Thymidylate synthase (TS) is a major target in the chemotherapy of colorectal cancer and some other neoplasms. The emergence of resistance to the treatment is often related to the increased levels of TS in cancer cells, which have been linked to the elimination of TS binding to its own mRNA upon drug binding, a feedback regulatory mechanism, and/or to the increased stability to intracellular degradation of TS.drug complexes (versus unliganded TS). The active site loop of human TS (hTS) has a unique conformation resulted from a rotation by 180 degrees relative to its orientation in bacterial TSs. In this conformation, the enzyme must be inactive, because the catalytic cysteine is no longer positioned in the ligand-binding pocket. The ordered solvent structure obtained from high resolution crystallographic data (2.0 A) suggests that the inactive loop conformation promotes mRNA binding and intracellular degradation of the enzyme. This hypothesis is supported by fluorescence studies, which indicate that in solution both active and inactive forms of hTS are present. The binding of phosphate ion shifts the equilibrium toward the inactive conformation; subsequent dUMP binding reverses the equilibrium toward the active form. Thus, TS inhibition via stabilization of the inactive conformation should lead to less resistance than is observed with presently used drugs, which are analogs of its substrates, dUMP and CH(2)H(4)folate, and bind in the active site, promoting the active conformation. The presence of an extension at the N terminus of native hTS has no significant effect on kinetic properties or crystal structure.  相似文献   

5.
Thymidylate synthase (TS) is a target enzyme for a number of anticancer agents including the 5-fluorouracil metabolite, FdUMP. The present paper reports on molecular modeling studies of the effect of substitution at C(5) position in the pyrimidine ring of the TS substrate, dUMP, on the binding affinity for the enzyme. The results of molecular dynamics simulations show that the binding of C(5) analogues of dUMP to TS in the binary complexes does not undergo changes, unless a substituent with a large steric effect, such as the propyl group, is involved. On the other hand, apparent differences in the binding of the TS cofactor, resulting from varying substitution at dUMP C(5), are observed in the modeled structures of the ternary complexes of TS. These binding characteristics are supplemented with a classical QSAR model quantifying the relation between the affinity for TS and the substituent electronic and steric effects of C(5) analogues of dUMP. Based on the findings from the present work, the perspectives for finding promising new C(5) analogues of dUMP as potential agents targeted against TS are discussed.  相似文献   

6.
Xiao F  Weng J  Fan K  Wang W 《PloS one》2011,6(6):e21527
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD) simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9) significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation.  相似文献   

7.
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the phosphorylated enzyme. The results obtained with the mutant R13A and E381A further support the model proposed for the molecular mechanism for the activation of the enzyme by phosphorylation.  相似文献   

8.
Fritz TA  Liu L  Finer-Moore JS  Stroud RM 《Biochemistry》2002,41(22):7021-7029
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.  相似文献   

9.
We have reported that bovine DNase I, a secretory glycoprotein, acquires mannose 6-phosphate residues on 12.6% of its Asn-linked oligosaccharides when expressed in COS-1 cells and that the extent of phosphorylation increases to 79.2% when lysines are placed at positions 27 and 74 of the mature protein (Nishikawa, A., Gregory, W. , Frenz, J., Cacia, J., and Kornfeld, S. (1997) J. Biol. Chem. 272, 19408-19412). We now demonstrate that murine DNase I, which contains Lys27 and Lys74, is phosphorylated only 20.9% when expressed in the same COS-1 cell system. This difference is mostly due to the absence of three residues present in bovine DNase I (Tyr54, Lys124, and Ser190) along with the presence of a valine at position 23 that is absent in the bovine species. We show that Val23 inhibits phosphorylation at the Asn18 glycosylation site, whereas Tyr54, Lys124, and Ser190 enhance phosphorylation at the Asn106 glycosylation site. Tyr54 and Ser190 are widely separated from each other and from Asn106 on the surface of DNase I, indicating that residues present over a broad area influence the interaction with UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, which is responsible for the formation of mannose 6-phosphate residues on lysosomal enzymes.  相似文献   

10.
Based on crystal structures of bacterial thymidylate synthases (TS), a glutamine corresponding to residue 214 in human TS (hTS) is located in a region that is postulated to be critical for conformational changes that occur upon ligand binding. Previous steady-state kinetic studies indicated that replacement of glutamine at position 214 (Gln214) of hTS by other residues results in a decrease in nucleotide binding and catalysis, with only minor effects on folate binding (D. J. Steadman et al. (1998) Biochemistry 37, 7089-7095). The data suggested that Gln214 maintains the enzyme in a conformation that facilitates nucleotide binding. In the present study, transient-state kinetic analysis was utilized to determine rate constants that govern specific steps along the catalytic pathway of hTS, which provides the first detailed kinetic mechanism for hTS. Analysis of the reaction mechanisms of mutant TSs revealed that substitution at position 214 significantly affects nucleotide binding and the rate of chemical conversion of bound substrates to products, which is consistent with the results of steady-state kinetic analysis. Furthermore, it is shown that substitution at position 214 affects the rate of isomerization, presumably from an open to a closed form of the enzyme-substrate complex. Although the affinity of the initial binding of CH2H4folate is not substantially affected, Kiso, the ratio of the forward rate of isomerization (kiso) to the reverse rate of isomerization (kr, iso), is 2-6-fold lower for the mutants at position 214 compared to Q214, with the greatest effects on kiso. In addition, the binding of the folate analogue, CB3717, to dUMP binary complexes of mutant enzymes was characterized by a slow isomerization phase that was not detected in binding studies utilizing wild-type hTS. The data are consistent with the hypothesis that Gln214 is located at a structurally critical region of the enzyme.  相似文献   

11.
Salo-Ahen OM  Wade RC 《Proteins》2011,79(10):2886-2899
Human thymidylate synthase (hTS) is an established anticancer target. It catalyses the production of 2'-deoxythymidine-5'-monophosphate, an essential building block for DNA synthesis. Because of the development of cellular drug resistance against current hTS inhibitors, alternative inhibition strategies are needed. hTS exists in two forms, active and inactive, defined by the conformation of the active-site (AS) loop, which carries the catalytic cysteine, C195. To investigate the mechanism of activation and inactivation, targeted molecular dynamics (TMD) simulations of the transitions between active and inactive states of hTS were performed. Analysis of changes in the dihedral angles in the AS loop during different TMD simulations revealed complex conformational transitions. Despite hTS being a homodimeric enzyme and the conformational transition significantly involving the dimer interface, the transition occurs in an asymmetric, sequential manner via an ensemble of pathways. In addition to C195, which reoriented during the simulations, other key residues in the rotation of the AS loop included W182 and R185. The interactions of the cognate bulky W182 residues at the dimer interface hindered the simultaneous twist of the AS loops in the hTS dimer. Interactions of R185, which is unique for hTS, with ligands at different allosteric sites affected the activation transition. In addition to providing insights into the activation/inactivation mechanism of hTS and how conformational transitions can occur in homodimeric proteins, our observations suggest that blocking of AS loop rotation by ligands binding in the large cavity between the loops could be one way to stabilize inactive hTS and inhibit the enzyme.  相似文献   

12.
Hritz J  Zoldák G  Sedlák E 《Proteins》2006,64(2):465-476
NADH oxidase (NOX) from Thermus thermophilus is a member of a structurally homologous flavoprotein family of nitroreductases and flavin reductases. The importance of local conformational dynamics in the active site of NOX has been recently demonstrated. The enzyme activity was increased by 250% in the presence of 1 M urea with no apparent perturbation of the native structure of the protein. The present in silico results correlate with the in vitro data and suggest the possible explanation about the effect of urea on NOX activity at the molecular level. Both, X-ray structure and molecular dynamics (MD) simulations, show open conformation of the active site represented by approximately 0.9 nm distance between the indole ring of Trp47 and the isoalloxazine ring of FMN412. In this conformation, the substrate molecule can bind in the active site without sterical restraints. MD simulations also indicate more stable conformation of the active site called "closed" conformation. In this conformation, Trp47 and the isoalloxazine ring of FMN412 are so close to each other (approximately 0.5 nm) that the substrate molecule is unable to bind between them without perturbing this conformation. The open/close transition of the active site between Trp47 and the flavin ring is accompanied by release of the "tightly" bound water molecule from the active site--cofactor assisted gating mechanism. The presence of urea in aqueous solutions of NOX prohibits closing of the active site and even unlocks the closed active site because of the concomitant binding of a urea molecule in the active site cavity. The binding of urea in the active site is stabilized by formation of one/two persistent hydrogen bonds involving the carbonyl group of the urea molecule. Our report represents the first MD study of an enzyme from the novel flavoprotein family of nitroreductases and flavin reductases. The common occurrence of aromatic residues covering the active sites in homologous enzymes suggests the possibility of a general gating mechanism and the importance of local dynamics within this flavoprotein family.  相似文献   

13.
M Montenarh  D Müller 《FEBS letters》1987,221(2):199-204
SV40 large T antigen is phosphorylated at up to ten different amino acids clustered in an N-terminal and a C-terminal part of the polypeptide chain. The N-terminal phosphorylated residues include Ser 123 and Thr 124. We have analyzed the oligomerization, the complex formation with the cellular oncoprotein p53 and the DNA-binding properties of T antigen from two different SV40 transformed cell lines which have either an amino acid exchange at Ser 123 to Phe (W7) or Thr 124 to Ile (D29). In comparison to wild-type T antigen both mutant T antigens have a slightly reduced binding affinity for both binding sites, I and II, of SV40 DNA. Phosphorylation at both residues of T antigen is not essential for formation of the complex with p53. Only the phosphorylation at Thr 124 seems to be critical for the formation of high molecular mass oligomers. Our data support the hypothesis that the oligomerization of T antigen seems to be implicated in viral DNA replication.  相似文献   

14.
Phosphorylation of phenylalanine hydroxylase (PAH) at Ser16 by cAMP-dependent protein kinase increases the basal activity of the enzyme and its resistance to tryptic proteolysis. The modeled structures of the full-length phosphorylated and unphosphorylated enzyme were subjected to molecular dynamics simulations, and we analyzed the energy of charge-charge interactions for individual ionizable residues in the final structures. These calculations showed that the conformational changes induced by incorporation of phosphate were localized and limited mostly to the region around the phosphoserine (Arg13-Asp17) and a region around the active site in the catalytic domain that includes residues involved in the binding of the iron and the substrate L-Phe (Arg270 and His285). The absence of a generalized conformational change was confirmed by differential scanning calorimetry, thermal-dependent circular dichroism, fluorescence spectroscopy, and limited chymotryptic proteolysis of the phosphorylated and unphosphorylated PAH. Our results explain the effect of phosphorylation of PAH on both the resistance to proteolysis specifically by trypsin-like enzymes and on the increase in catalytic efficiency.  相似文献   

15.
A protein phosphorylated efficiently in vitro by MAP kinase-activated protein kinase-2 (MAPKAP-K2) was purified from skeletal muscle extracts and identified as the calcium/calmodulin-dependent myosin light chain kinase (MLCK). The phosphorylation site was mapped to Ser(161), a residue shown previously to be autophosphorylated by MLCK. The residue equivalent to Ser(161) became phosphorylated in vivo when rat hindlimbs were stimulated electrically. However, phosphorylation was triggered within seconds, whereas activation of MAPKAP-K2 required several minutes. Moreover, contraction-induced Ser(161) phosphorylation was similar in wild-type or MAPKAP-K2-/- mice. These results indicate that contraction-induced phosphorylation is probably catalyzed by MLCK and not MAPKAP-K2. Ser(161) phosphorylation induced the binding of MLCK to 14-3-3 proteins, but did not detectably affect the kinetic properties of MLCK. The sequence surrounding Ser(161) is unusual in that residue 158 is histidine. Previously, an arginine located three residues N-terminal to the site of phosphorylation was thought to be critical for the specificity of MAPKAP-K2.  相似文献   

16.
Molecular dynamics simulations and free energy calculations are presented, exploring previously described experimentally studied interactions of a series of 2'-fluoro-substituted dUMP/FdUMP analogues with thymidylate synthase (TS). The results show the inhibitory behaviors of 2'-F-ara-UMP, 2',2'-diF-dUMP and 2',5-diF-ara-UMP to be dependent upon the binding positions and orientations adopted by the molecules of these compounds in the active site of TS. The binding mode of 2',5-diF-ara-UMP suggests a novel role of the active site residue Trp 80, stabilizing through hydrophobic stacking the binding position of the pyrimidine ring in 2',5-diF-ara-UMP.  相似文献   

17.
Phosphorylation by protein kinase A and dephosphorylation by protein phosphatase 1 modulate the inhibitory activity of phospholamban (PLN), the endogenous regulator of the sarco(endo)plasmic reticulum calcium Ca(2+) ATPase (SERCA). This cyclic mechanism constitutes the driving force for calcium reuptake from the cytoplasm into the myocite lumen, regulating cardiac contractility. PLN undergoes a conformational transition between a relaxed (R) and tense (T) state, an equilibrium perturbed by the addition of SERCA. Here, we show that the single phosphoryl transfer at Ser16 induces a more pronounced conformational switch to the R state in phosphorylated PLN (pPLN). The binding affinity of PLN to SERCA is not affected (K(d) values for the transmembrane domains of pPLN and PLN are approximately 60 microM), supporting the hypothesis that phosphorylation at Ser16 does not dissociate PLN from SERCA. However, the binding surface and dynamics in domain Ib (residues 22-31) change substantially upon phosphorylation. Since PLN can be singly or doubly phosphorylated at Ser16 and Thr17, we propose that these sites remotely control the conformation of domain Ib. These findings constitute a paradigm for how post-translational modifications such as phosphorylation in the cytoplasmic portion of membrane proteins control intramembrane protein-protein interactions.  相似文献   

18.
P(IB)-type ATPases have an essential role maintaining copper homeostasis. Metal transport by these membrane proteins requires the presence of a transmembrane metal occlusion/binding site. Previous studies showed that Cys residues in the H6 transmembrane segment are required for metal transport. In this study, the participation in metal binding of conserved residues located in transmembrane segments H7 and H8 was tested using CopA, a model Cu(+)-ATPase from Archaeoglobus fulgidus. Four invariant amino acids in the central portion of H7 (Tyr(682) and Asn(683)) and H8 (Met(711) and Ser(715)) were identified as required for Cu(+) binding. Replacement of these residues abolished enzyme activity. These proteins did not undergo Cu(+)-dependent phosphorylation by ATP but were phosphorylated by P(i) in the absence of Cu(+). Moreover, the presence of Cu(+) could not prevent the enzyme phosphorylation by P(i). Other conserved residues in the H7-H8 region were not required for metal binding. Mutation of two invariant Pro residues had little effect on enzyme function. Replacement of residues located close to the cytoplasmic end of H7-H8 led to inactive enzymes. However, these were able to interact with Cu(+) and undergo phosphorylation. This suggests that the integrity of this region is necessary for conformational transitions but not for ligand binding. These data support the presence of a unique transmembrane Cu(+) binding/translocation site constituted by Tyr-Asn in H7, Met and Ser in H8, and two Cys in H6 of Cu(+)-ATPases. The likely Cu(+) coordination during transport appears distinct from that observed in Cu(+) chaperone proteins or catalytic/redox metal binding sites.  相似文献   

19.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

20.
In order to examine the possible involvements of Ca2+/calmodulin-dependent protein kinases (CaM kinases) in the regulation of ribosomal functions, we tested the phosphorylation of rat ribosomal protein S19 (RPS19) by various CaM kinases in vitro . We found that CaM kinase Iα, but not CaM kinase Iβ1, Iβ2, II, or IV, robustly phosphorylated RPS19. From the consensus phosphorylation site sequence, Ser59, Ser90, and Thr124 were likely to be phosphorylated; therefore, we mutated each amino acid to alanine and found that the mutation of Ser59 to alanine strongly attenuated phosphorylation by CaM kinase Iα, suggesting that Ser59 was a major phosphorylation site. Furthermore, we produced a specific antibody against RPS19 phosphorylated at Ser59, and found that Ser59 was phosphorylated both in GT1-7 cells and rat brain. Phosphorylation of RPS19 in GT1-7 cells was inhibited by KN93, an inhibitor of CaM kinases. Immunoblot analysis after subcellular fractionation of rat brain demonstrated that phosphorylated RPS19 was present in 80S ribosomes. Phosphorylation of RPS19 by CaM kinase Iα augmented the interaction of RPS19 with the previously identified S19 binding protein. These results suggest that CaM kinase Iα regulates the functions of RPS19 through phosphorylation of Ser59.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号