首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.  相似文献   

2.
Based on molecular docking analysis of earlier results, we designed a series of 2,5-disubstituted furans/pyrroles (5a-h) as HIV-1 entry inhibitors. Compounds were synthesized by Suzuki-Miyaura cross coupling, followed by a Knoevenagel condensation or Wittig reaction. Four of these compounds were found to be effective in inhibiting HIV-1 infection, with the best compounds being 5f and 5h, which exhibited significant inhibition on HIV-1(IIIB) infection at micromolar levels with low cytotoxicity. These compounds are also effective in blocking HIV-1 mediated cell-cell fusion and the gp41 six-helix bundle formation, suggesting that they are also HIV-1 fusion inhibitors targeting gp41 and have potential to be developed as a new class of anti-HIV-1 agents.  相似文献   

3.
4.
5.
Integration of a DNA copy of the HIV-1 genome is required for viral replication and pathogenicity, and this highly specific molecular process is mediated by the virus-encoded integrase protein. The requirement for integration, combined with the lack of a known analogous process in mammalian cells, makes integrase an attractive target for therapeutic inhibitors of HIV-1 replication. While many reports of HIV-1 IN inhibitors exist, no such compounds have yet emerged to treat HIV-1 infection. As such, new classes of integrase inhibitors are needed. We have combined molecular modeling and combinatorial chemistry to identify and develop a new class of HIV-1 integrase inhibitors, the Carbonyl J [N,N'-bis(2-(5-hydroxy-7-naphthalenesulfonic acid)urea] derivatives. This new class includes a number of compounds with sub-micromolar IC(50) values for inhibiting purified HIV-1 integrase in vitro. Herein we describe the chemical characteristics that are important for integrase inhibition and cell toxicity within the Carbonyl J derivatives. Copyright 2000 Academic Press.  相似文献   

6.
The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action.  相似文献   

7.
HIV-1 protease inhibitors (PI's) bearing 1,3,4-oxadiazoles at the P1' position were prepared by a novel method involving the diastereoselective installation of a carboxylic acid and conversion to the P1' heterocycle. The compounds are picomolar inhibitors of native HIV-1 protease, with most of the compounds maintaining excellent antiviral activity against a panel of PI-resistant strains.  相似文献   

8.
9.
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.  相似文献   

10.
HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.  相似文献   

11.
A new class of potent sulfoximine inhibitors for HIV-1 protease has been designed and synthesized. Substitution of the sulfoximine moiety into different parent compounds yields different inhibition effects. While our previously studied sulfoximine-based inhibitors display potency of 2.5 nM (IC(50)) against HIV-1 protease, introduction of the sulfoximine moiety into the asymmetric Indinavir yielded only micromolar inhibition. Docking studies showed structural variations in their modes of binding which explains this unexpected observation. The implication of these observations in the development of other sulfoximine inhibitors is discussed.  相似文献   

12.
Existing experimental as well as computational screening methods select potential ligands or drug candidates on the basis of binding affinity. Since the binding affinity is a function of the enthalpy (DeltaH) and entropy (DeltaS) changes, it is apparent that improved binding can be achieved in different ways: by optimizing DeltaH, DeltaS, or a combination of both. However, the behavior of enthalpically or entropically optimized inhibitors is fundamentally different, including their response to mutations that may elicit drug resistance. In the design of HIV-1 protease inhibitors, high binding affinity has usually been achieved by preshaping lead compounds to the geometry of the binding site and by incorporating a high degree of hydrophobicity. The thermodynamic consequence of that approach is that the binding affinity of the resulting inhibitors becomes entropically favorable but enthalpically unfavorable. Specifically, the resulting high binding affinity is due to an increased solvation entropy (hydrophobic effect) combined with a reduced loss of conformational entropy of the inhibitor upon binding (structural rigidity). Here we report that tripeptide inhibitors derived from the transframe region of Gag-Pol (Glu-Asp-Leu and Glu-Asp-Phe) bind to the HIV-1 protease with a favorable enthalpy change. This behavior is qualitatively different from that of known inhibitors and points to new strategies for inhibitor design. Since the binding affinities of enthalpically favorable and enthalpically unfavorable inhibitors have opposite temperature dependence, it is possible to design fast screening protocols that simultaneously select inhibitors on the basis of affinity and enthalpy.  相似文献   

13.
14.
结合分子相似性、药效团和分子对接建立兼顾计算效率和预测准确度的HIV-1蛋白酶抑制剂筛选方法。首先通过对现有HIV-1蛋白酶抑制剂分子进行相似性分析,选取代表性的HIV-1蛋白酶抑制剂作为模板分子,构建和优化药效团模型,并从1万个化合物中优先筛选出500个化合物。而后采用分子对接方法进一步考察化合物与HIV-1蛋白酶结合情况,得到4个新的活性候选化合物,并进行其结合自由能计算和抗突变性分析。结果表明新候选化合物ST025723和HIV-1蛋白酶表现出较好的相互作用和抗突变性,具有深入研究的价值,同时也证明分子相似性、药效团和分子对接相结合能够快速有效地发现新颖活性候选化合物。  相似文献   

15.
16.
17.
18.
19.
Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly interfacial inhibitors that show antiviral activity.  相似文献   

20.
Cyclophilin A has attracted attention recently as a new target of anti-human immunodeficiency virus type 1 (HIV-1) drugs. However, so far no drug against HIV-1 infection exhibiting this mechanism of action has been approved. To identify new potent candidates for inhibitors, we performed in silico screening of a commercial database of more than 1,300 drug-like compounds by using receptor-based docking studies. The candidates selected from docking studies were subsequently tested using biological assays to assess anti-HIV activities. As a result, two compounds were identified as the most active. Specifically, both exhibited anti-HIV activity against viral replication at a low concentration and relatively low cytotoxicity at the effective concentration inhibiting viral growth by 50 %. Further modification of these molecules may lead to the elucidation of potent inhibitors of HIV-1.
Figure
Docking poses of two compounds (23 and 12)?with anti-HIV activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号