首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin.  相似文献   

2.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   

3.
This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein–protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.  相似文献   

4.
The synthesis of the murein precursor lipid I is performed by MraY. We have shown that mraY is an essential gene for cell growth. Cells depleted of MraY first swell and then lyse. The expression of mraY DNA in vitro produces a 40-kDa polypeptide detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

5.
Datko AH  Mudd SH 《Plant physiology》1985,77(3):770-778
A survey of the capacity of Lemna paucicostata to take up organic compounds such as might be present in the natural environment of this plant has identified eight discrete transport systems. Reciprocal inhibition studies defined the preferred substrates for these systems as follows: (a) neutral l-α-amino acids, (b) basic amino acids, (c) purine bases, (d) choline, (e) ethanolamine, (f) tyramine, (g) urea, and (h) aldohexoses. Each of these systems takes up its preferred substrates at high rates. At low concentrations, each Lemna frond during each minute takes up amounts which would be found in volumes ranging from 0.4 (tyramine) to 3.9 (urea) times its own volume. The two systems for amino acid transport both showed kinetics of the biphasic type, so that uptake by each can be described as the composite result of two Michaelis-Menten processes. The neutral amino acid system neither transports basic amino acids nor is inhibited by these compounds. The basic amino acid system does not transport neutral amino acids but is strongly inhibited by some, but not all, of these compounds. It is argued that the maintenance of these active, specific, and discrete systems in Lemna suggests they play important roles permitting this plant to utilize organic compounds occurring naturally in its environment.  相似文献   

6.
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.  相似文献   

7.
Peptidoglycan biosynthesis is an essential process in bacteria and is therefore a suitable target for the discovery of new antibacterial drugs. One of the last cytoplasmic steps of peptidoglycan biosynthesis is catalyzed by the integral membrane protein MraY, which attaches soluble UDP-N-acetylmuramoyl-pentapeptide to the membrane-bound acceptor undecaprenyl phosphate. Although several natural product-derived inhibitors of MraY are known, none have the properties necessary to be of clinical use as antibacterial drugs. Here we describe a novel, homogeneous, fluorescence resonance energy transfer-based MraY assay that is suitable for high-throughput screening for novel MraY inhibitors. The assay allows for continuous measurement, or it can be quenched prior to measurement.  相似文献   

8.
p-Chloroamphetamine inhibited to some degree all amino acid-dependent pyrophosphate-exchange activities which could be detected in a rabbit reticulocyte extract. A detailed kinetic analysis of the reaction catalyzed by reticulocyte leucyl-tRNA synthetase demonstrated that the inhibitor affected only amino acid binding. Less rigorous studies of other synthetases from both rabbit reticulocyte and Escherichia coli could be similarly interpreted, suggesting that this compound interacts in a common manner with these several enzymes. The contribution of such effects to the inhibition of protein synthesis by the drug was investigated using cell-free translation systems in which rates of amino acid incorporation were limited to varying degrees by the synthesis and availability of aminoacyl-tRNA. In a wheat germ system programmed with globin mRNA, in which levels of amino acids and aminoacyl-tRNAs were shown to limit the rate of protein synthesis, the inhibition produced by p-chloroamphetamine could be partially reversed by increasing the concentration of the limiting amino acid. In a reticulocyte lysate, in which amino acid concentrations were not limiting, inhibition failed to show an amino acid-reversible component. Thus, while the inhibition of aminoacyl-tRNA synthetases by amphetamines can be shown in some cases to play a role in the effects of these compounds on in vitro protein synthesis, other sites of interference with initiation and/ or elongation reactions may predominate, depending on the construction of the system under study.  相似文献   

9.
The synthesis and inhibitory activity against MraY of a series of simplified analogues of liposidomycins are described. These compounds were mainly obtained by performing parallel synthesis in the 6'-position of a scaffold that gathers key features found necessary for the binding to MraY. Thus, inhibitory activity was improved from 5300 to 140 nM. This improvement was correlated with the length and lipophilicity of substituents, but was found to be independent of the nature of the chemical bond generated. In addition, some of these inhibitors presented encouraging antibacterial activities.  相似文献   

10.
Abstract

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.tb) or tubercule bacillus, and H37Rv is the most studied clinical strain. The recent development of resistance to existing drugs is a global health-care challenge to control and cure TB. Hence, there is a critical need to discover new drug targets in M.tb. The members of peptidoglycan biosynthesis pathway are attractive target proteins for antibacterial drug development. We have performed in silico analysis of M.tb MraY (Rv2156c) integral membrane protein and constructed the three-dimensional (3D) structure model of M.tb MraY based on homology modeling method. The validated model was complexed with antibiotic muraymycin D2 (MD2) and was used to generate structure-based pharmacophore model (e-pharmacophore). High-throughput virtual screening (HTVS) of Asinex database and molecular docking of hits was performed to identify the potential inhibitors based on their mode of interactions with the key residues involved in M.tb MraY–MD2 binding. The validation of these molecules was performed using molecular dynamics (MD) simulations for two best identified hit molecules complexed with M.tb MraY in the lipid bilayer, dipalmitoylphosphatidyl-choline (DPPC) membrane. The results indicated the stability of the complexes formed and retained non-bonding interactions similar to MD2. These findings may help in the design of new inhibitors to M.tb MraY involved in peptidoglycan biosynthesis.  相似文献   

11.
Cell division in the epidermis of stem segments ofT. fournieri stopped immediately when the epidermis was separated from subjacent tissues after having been in contact with these tissues for some time. Thus, the effects of the inductive signals emanating from these tissues did not persist. However, cell division in isolated epidermis cultured alone could be induced by adding asparagine, alanine or glutamine to the medium. Asparagine, at 5 mM, had the greatest stimulatory effect. Growth substances had a synergistic effect on this induction by amino compounds. However, these cell divisions, unlike those in epidermis cultured together with subepidermal tissues, did not lead to organogenesis. The amino compounds which partially replaced the inductive action of subepidermal layers on the epidermis can be considered as one of the endogenous factors coming from the first-named layers in intact explants.  相似文献   

12.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

13.
A series of 5'-uridinyl dipeptides were synthesised which mimic the amino terminal chain of nucleoside antibiotic mureido omycin A. Aminoacyl-beta-alanyl- and aminoacyl-N-methyl-beta-alanyl- dipeptides were attached either via an ester linkage to the 5'-hydroxyl of uridine, or via an amide linkage to 5'-amino-5'-deoxyuridine. The most active inhibitor of Escherichia coli phospho-MurNAc-pentapeptide translocase (MraY) was 5'-O-(L-Ala-N-methyl-beta-alanyl)-uridine (13l), which also showed 97% enzyme inhibition at 2.35 mM concentration, and showed antibacterial activity at 100 microg/mL concentration against Pseudomonas putida. Both the central N-methyl amide linkage and a 5' uridine ester linkage were required for highest biological activity. Enzyme inhibition was shown to be competitive with Mg(2+). It is proposed that the primary amino terminus of the inhibitor binds in place of the Mg(2+) cofactor at the MraY active site, positioned via a cis-N-methyl amide linkage.  相似文献   

14.
Zheng Y  Struck DK  Bernhardt TG  Young R 《Genetics》2008,180(3):1459-1466
Protein E, the lysis protein of bacteriophage phiX174, is a specific inhibitor of MraY, the phospho-MurNAc-pentapeptide translocase that catalyzes the synthesis of lipid I in the conserved pathway for peptidoglycan biosynthesis. The original evidence for this inhibition was the isolation of two spontaneous E-resistance mraY mutants. Here we report further genetic studies aimed at dissecting the interaction between E and MraY, using a genetic strategy that is facile, rapid, and does not depend on the availability of purified E, purified MraY, or its substrates. This system relies on the ability of mraY or its enzymatically inactive D267N allele to protect cells from lysis after induction of a chimeric lambda :: E prophage. Using this approach, the MraY protein from Bacillus subtilis, which shares 43% sequence identity with the Escherichia coli enzyme, was found to interact weakly, if at all, with E. A potential E binding site defined by transmembrane domains 5 and 9 has been identified by isolating more mraY mutants resistant to E inhibition. Genetic analysis indicates that these E-resistant alleles fall into three classes on the basis of the affinity of the encoded proteins for MraY.  相似文献   

15.
MraY is an established target for the discovery of antibacterial agents. The conventional assay for MraY uses radioactive substrate and analysis of products after paper chromatography or butanol extraction. Synthesis of radiolabeled substrate has been done in vitro using purified enzymes or by growing cells on radiolabeled precursors. The authors report a simple and rapid method to chemically radiolabel MraY substrate, UDP-MurNAc-pentapeptide. Specific activity obtained by this method was more than 100 times higher than the conventionally labeled substrate, and yields are high enough to support the requirements of high-throughput screening (HTS). The authors have developed a microplate-based homogeneous assay for MraY in which the product is captured on wheat germ agglutinin (WGA) scintillation proximity assay (SPA) beads. The assay was validated by showing inhibition by specific inhibitors of MraY but not by inhibitors of other enzymes of peptidoglycan synthesis. The assay uses wild-type membranes of Escherichia coli, giving it an advantage over recently described assays that need the protein to be overexpressed. In addition, it has an advantage over the high-throughput MraY-MurG coupled assay reported in the literature because it is MraY specific, and therefore hits obtained in this assay do not need further deconvolution. It has potential for use in HTS approaches to find novel inhibitors of MraY.  相似文献   

16.
The composition of the floral nectar sugars and amino acids of four species of Passiflora (P. foetida, P. caerulea, P. suberosa, and P. misera) included in different infrageneric taxa and with distinct pollination mechanisms has been studied. The effect of weather and floral age on nectar volume, existence, and total and relative amounts of the various compounds was explored. The proportion of sugars was rather constant within a given species whereas the composition, number, and total quantity of amino acids showed great intraspecific and intra-plant variability; these nectar properties were independent of floral stage or meteorological conditions. Species belonging to the same subgenus displayed equivalent sugar ratios and similar total amount of amino acids, so these characteristics might be conservative in the genus. For all species, the amino acid concentration surpassed known values for their respective pollination syndromes, viz. bee and wasp-pollinated flowers. No relationship emerged between pollinators with different glossa length and nectars with distinct sugar ratios. Rather, nectar chemical composition seems to reflect taxonomic relationships.  相似文献   

17.
Incubation of embryoless barley (Hordeum vulgare) half-seeds for 24 hours with 0.1 m glutamate or aspartate resulted in the release of 17 to 48% as much α-amylase as did incubation with 260 mμm gibberellin. With incubation periods of 48 to 51 hours these amino acids were on the average about half as active as response-saturating concentrations of gibberellin, and in some experiments they were essentially as active. Citric acid cycle intermediates, glycolytic pathway intermediates, and cofactors of these pathways failed to induce α-amylase synthesis, while the following compounds were active: asparagine, homoserine, diaminopimelate, isoleucine, methionine, glutamine, ornithine, citrulline, argininosuccinate, and δ-aminolevulinate. However, threonine, lysine, β-alanine, alanine, γ-aminobutyrate, α-ketobutyrate, proline, arginine, glycine, leucine, and putrescine were inactive. Two patterns were noted in the list of active and inactive compounds: (a) all of the active compounds contain an amino group and are biosynthetically derived from citric acid cycle intermediates; and (b) biosynthetic precursors of the amino acids arginine, proline, threonine, and lysine were active whereas these amino acids were not.  相似文献   

18.
MraY translocase catalyzes the first committed membrane-bound step of bacterial peptidoglycan synthesis leading to the formation of lipid I. The essential membrane protein therefore has a high potential as target for drug screening approaches to develop antibiotics against gram-positive as well as gram-negative bacteria. However, the production of large integral membrane proteins in conventional cellular expression systems is still very challenging. Cell-free expression technologies have been optimized in recent times for the production of membrane proteins in the presence of detergents (D-CF), lipids (L-CF), or as precipitates (P-CF). We report the development of preparative scale production protocols for the MraY homologues of Escherichia coli and Bacillus subtilis in all three cell-free expression modes followed by their subsequent quality evaluation. Although both proteins can be cell-free produced at comparable high levels, their requirements for optimal expression conditions differ markedly. B. subtilus MraY was stably folded in all three expression modes and showed highest translocase activities after P-CF production followed by defined treatment with detergents. In contrast, the E. coli MraY appears to be unstable after post- or cotranslational solubilization in detergent micelles. Expression kinetics and reducing conditions were identified as optimization parameters for the quality improvement of E. coli MraY. Most remarkably, in contrast to B. subtilis MraY the E. coli MraY has to be stabilized by lipids and only the production in the L-CF mode in the presence of preformed liposomes resulted in stable and translocase active protein samples.  相似文献   

19.
A series of structurally related substituted phenethylamines shows extreme toxicity toward wild-type callus tissue cultures of tobacco (Nicotiana tabacum), soybean (Glycine max), corn (Zea mays), and sunflower (Helianthus annuus L.), but tobacco crown gall cultures are resistant to the compounds. The essential components that result in toxicity of the phenethylamines include one aromatic hydroxyl and one primary aliphatic amino group. A series of attenuated crown gall cultures, generated by transformation of tobacco with various modified Agrobacterium strains, has been used to demonstrate that the resistance of crown galls to the phenethylamines is due to the expression in these tissues of isopentenyl transferase, a first step in cytokinin biosynthesis. The toxicity of the compounds to tissue cultures is very rapid, but can be overcome by prior exposure of the calli to exogenous cytokinin. Because of the relationships we have observed between cytokinins and these compounds, we propose that the substituted phenethylamines may represent a class of chemicals that can be used as specific probes to further an understanding of cytokinin metabolism in plant tissues.  相似文献   

20.
Sixteen muraymycin derivatives 2-17 were synthesized based on selective reactions of the primary and secondary amino groups of muraymycin C1 (1) with isocyanates and aldehydes. Disubstituted derivatives 3-9 demonstrated no activity against either MraY or MurG at 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号