首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estrogenic activity of several intermediary plant compounds has raised concern about possible risks of unwanted interference with endocrine regulation, but on the other hand there are potential medical benefits, in particular in treatment of menopausal symptoms or cancer. In the present study, we compare the estrogenic effects of phytoestrogens naringenin, 8-prenylnaringenin, 6-(1,1-dimethylallyl)naringenin, and the synthetic 4'-acetyl-7-prenyloxynaringenin. Two mammalian in vitro systems and a fish in vivo system were used to study the estrogenic properties with reference to genistein, 17-beta-estradiol or ethynylestradiol. Strong differences were observed between the mammalian in vitro and the fish in vivo test system. In the medaka sex reversal/vtg gene expression assay no estrogenic effects of the naringenin-type flavonoids were observed, while mammalian in vitro systems showed a similar and graded response to the test compounds.  相似文献   

2.
Flavonoids are distributed across the plant kingdom and have attracted substantial attention owing to their potential benefits for human health. Several studies have demonstrated that flavonoids prenylation enhances various biological activities, suggesting an attractive tool for developing functional foods. This review provides an overview of the current knowledge on how prenylation influences the biological activity and bioavailability of flavonoids. The enhancement effect of prenylation on the biological activities of dietary flavonoids in mammals was demonstrated by comparing the effect of 8-prenyl naringenin (8PN) with that of parent naringenin in the prevention of disuse muscle atrophy in mice. This enhancement results from higher muscular accumulation of 8PN than naringenin. As to bioavailability, despite the lower absorption of 8-prenyl quercetin (8PQ) compared with quercetin, higher 8PQ accumulation was found in the liver and kidney. These data imply that prenylation interferes with the elimination of flavonoids from tissues.  相似文献   

3.
Dimethylallyl diphosphate: naringenin 8-dimethylallyltransferase (EC 2.5.1) was characterized. The enzyme was enantiospecific for (-)-(2S)-naringenin and utilized 3,3-dimethylallyl diphosphate as sole prenyl donor. It required Mg2+ (optimum concentration, 10 mM), and has an optimum pH of 9-10. The apparent Km values for 3,3-dimethylallyl diphosphate and naringenin were 120 and 36 microM, respectively. The microsomal fraction prenylated several other flavanones at the C-8 position less effectively as compared with naringenin. Interestingly, when 2'-hydroxynaringenin was used as a prenyl acceptor, the 8-lavandulyl (sophoraflavanone G) and the 6-dimethylallyl derivatives were formed, together with the 8-dimethylallyl derivative, leachianone G. These results suggest that the 2'-hydroxy group of naringenin plays an important role for the formation of a lavandulyl group.  相似文献   

4.
5.
Six isoflavones, daidzein (4',7,-dihydroxyisoflavone), genistein (4',5,7-trihydroxyisoflavone), genistin (genistein 7-O-beta-D-glucopyranoside), isoprunetin (4',7-dihydroxy, 5-metoxyisoflavone), isoprunetin 7-O-beta-D-glucopyranoside, isoprunetin 4',7-di-O-beta-D-glucopyranoside and four flavones, luteolin (3',4',5,7-tetrahydroxyflavone), luteolin 7-O-beta-D-glucopyranoside, luteolin 4'-O-beta-D-glucopyranoside, licoflavone C (4',5,7-trihydroxy,8-isoprenylflavone) were purified from Mediterranean plants (Genista morisii and Genista ephedroides) and their estrogenic activity was assessed by a yeast reporter gene assay (Saccharomyces cerevisiae RMY326 ER-ERE). Licoflavone C showed a powerful estrogenic activity at 10(-7) M (0.0338 microg/ml) and it was 47.45% than 10(-8) M 17beta-estradiol (0.00272 microg/ml). The estrogenicity of this flavone was found to be comparable to the activity showed by genistein at 10(-6) M (0.27 microg/ml). This study points out that a glucose substituent in flavones and isoflavones modulates the hormone-like activity in a different way. Isoflavone aglycones showed a more estrogenic activity than the corresponding glucosides. Conversely, the glucosidation made estrogenic the flavone luteolin and the position of substitution differently influenced the estrogenic activity of compounds.  相似文献   

6.
7.
The effects of long-term administration of the phytoestrogens (PEs) genistein (Gen) and naringenin (Nar) on nociception, imflammatory hyperalgesia, and metamizol-induced analgesia, the efficacy of PEs vs 17β-E to modulate nociception, as well as the gender dependency of PE effects, and NOS and TH (NO synthase and tyrosine hydroxylase, respectively) expression in the periaqueductal gray (PAG) were studied in gonadectomized female and male rats. The paw pressure, tail flick, and hot plate tests, incapacitance test, and plethismometry were employed for in vivo studies. For in vitro studies, immuno-or histochemical staining of NOS and TH expression in PAG were applied. Data revealed that PEs, like 17β-E, decreased nociceptive thresholds in both sexes, but more significantly in female rats. Genistein intensified carrageenan-induced exudative inflammatory reaction and modulated metamizol-induced analgesia. Long-term PE administration resulted in gender-specific alterations of NO and TH expression. The effects of PEs might be correlated with gender-specific 17β-E-like action in male and female individuals. The results suggest that, similarly to other estrogen-like compounds, PEs can play a significant role in the individualization of analgesic therapy. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 350–353, July–August, 2006.  相似文献   

8.
The discovery that the hop constituent 8-prenylnaringenin (8PN) shows potent estrogenic activity, higher than that of the known phytoestrogens coumestrol, genistein and daidzein, has spurred an intense activity aimed at elucidating its biological profile and its dietary relevance connected with the consumption of beer. We have investigated if 8PN can induce signal transduction pathways via rapid estrogen receptor (ER) activation. Under conditions of estrogen-dependent growth, treatment of MCF-7 human breast cancer cells with 8PN induced a rapid and transient activation of the MAP kinase Erk-1 and Erk-2, with kinetics similar to those induced by 17beta-estradiol (E2). 8PN could trigger the MAP kinase pathway via dual c-Src kinase activation and association with ERalpha. Co-treatment with the ER antagonist ICI 182,780 blocked each step of this transduction pathway, confirming its ER dependence. However, and in striking contrast with E2, 8PN could not induce the PI3K/Akt pathway, resulting in altered kinetics and levels of cyclin D1 expression. In accordance with these observations, flow cytometric and biochemical analysis showed that 8PN inhibited cell cycle progression and induced apoptosis in MCF-7 cells. Interference with an ER associated PI3K pathway is proposed as a possible mechanism underlying the inhibition of survival and proliferation of estrogen responsive cells by 8PN. Taken together, our finding show that 8PN is an interesting new chemotype to explore the biology of ERs.  相似文献   

9.
Kim J  Um SJ  Woo J  Kim JY  Kim HA  Jang KH  Kang SA  Lim BO  Kang I  Choue RW  Cho Y 《Life sciences》2005,78(1):30-40
The seeds of Rhynchosia volubilis (SRV) (Leguminosae) and soybean have been used in oriental folk medicine to prevent postmenopausal osteoporosis. Their beneficial effects are caused by a high content of isoflavone, which function as partial agonists or antagonists of estrogen. To compare the estrogenic effects of SRV and soybean on the MG-63 osteoblastic cell proliferation, 70% methanol extracts of SRV or soybean were treated on MG-63 cells. Although biphasic over a concentration range of 0.001 mg/ml-0.1 mg/ml, both SRV and soybean extracts increased MG-63 cell proliferation. However SRV was more effective at increasing the cell proliferation that paralleled with the greater estrogenic effects as determined by estrogen receptor alpha (ERalpha) expression, an estrogenic response element (ERE)-luciferase activity and the selective expression of insulin-like growth factor-I (IGF-I). SRV-induced IGF-I expression resulted from increases in the mRNA levels. Despite the increased expression of ERbeta, ERE activity and IGF-I expression by soybean were lower than those by SRV. Furthermore, the comparable estrogenic effects between SRV and the combined treatment of genistein and daidzein standards at 0.5 x 10(-8) M, which is a concentration of these two isoflavones similar to that of SRV at 0.001 mg/ml, demonstrate that the greater estrogenicity of SRV for MG-63 cell proliferation is mediated by the synergism of low levels of isoflavones for the selective expression of IGF-I.  相似文献   

10.
BACKGROUND AND PURPOSE: Phytoestrogens exert estrogenic effects on the central nervous system, induce estrus, and stimulate growth of the genital tract of female animals. Over 300 plants and plant products, including some used in laboratory animal diets, contain phytoestrogens. Therefore, the source and concentration of phytoestrogens in rodent diets were determined. METHODS: Twelve rodent diets and six major dietary ingredients were assayed for phytoestrogens (daidzein, genistein, formononetin, biochanin A, and coumestrol), using high-performance liquid chromatography. Three rodent diets recently formulated to reduce phytoestrogen content also were assayed. RESULTS: Formononetin, biochanin A, and coumestrol were not detected. Soybean meal was the major source of daidzein and genistein; their concentrations were directly correlated to the percentage of soybean meal in each diet. CONCLUSIONS: High, variable concentrations of daidzein and genistein are present in some rodent diets, and dietary phytoestrogens have the potential to alter results of studies of estrogenicity. Careful attention should be given to diet phytoestrogen content, and their concentration should be reported. A standardized, open-formula diet in which estrogenic substances have been reduced to levels that do not alter results of studies that are influenced by exogenous estrogens is recommended.  相似文献   

11.
Many plant species produce phytoecdysteroids (PEs: i.e. analogues of insect steroid hormones). There is increasing evidence that PEs are used as a chemical defence by plants against non-adapted insects and nematodes. PEs are good candidates for the development of an environmentally safe approach to crop protection. Most crop species do not accumulate PEs. However, many arguments support the idea that most, if not all, plant species have the genetic ability to produce PEs, but the biosynthetic pathway is not active. A better understanding of the PE biosynthetic pathway and its regulation is consequently necessary. Spinach is one of the very few crop plants which produce large amounts of PEs, of which 20-hydroxyecdysone is the major component. Labeling experiments with radiolabeled precursor (mevalonic acid), putative ecdysteroid intermediates and 20-hydroxyecdysone itself have allowed investigation of PE biosynthesis and transport during spinach development. Biosynthesis takes place in older leaf sets ("sources"), but not in the young developing ones, which in contrast accumulate (acting as "sinks") the PEs produced by the older leaves. PEs are thus continuously redistributed within the developing plant, as its leaf set number increases. The biosynthetic pathway has been analyzed using excised leaves and various labeled precursors, and a preferential sequence of the last steps has been established. Although they do not produce PEs, apical leaf sets are nevertheless able to perform several putative terminal steps of PE biosynthesis. The regulatory mechanisms of PE synthesis appear to involve a direct negative feedback of 20-hydroxyecdysone (the major PE in spinach) on its own synthesis; thus, a sustained synthesis in older leaves requires that they can export the PE they produce.  相似文献   

12.
Flavonoids have attracted considerable attention in relation to their effects upon health. 8-Prenylnaringenin (8-PN) is found in the common hop (Humulus lupulus) and assumed to be responsible for the health impact of beer consumption. We wanted to clarify the effects of prenylation on the physiological functions of dietary flavonoids by comparing the effects of 8-PN with that of intact naringenin in the prevention of disuse muscle atrophy using a model of denervation in mice. Consumption of 8-PN (but not naringenin) prevented loss of weight in the gastrocnemius muscle further supported by the lack of induction of the protein content of a key ubiquitin ligase involved in muscle atrophy, atrogin-1, and by the activation of Akt phosphorylation. 8-PN content in the gastrocnemius muscle was tenfold higher than that of naringenin. These results suggested that, compared with naringenin, 8-PN was effectively concentrated into skeletal muscle to exert its preventive effects upon disuse muscle atrophy. It is likely that prenylation generates novel functions for 8-PN by enhancing its accumulation into muscle tissue through dietary intake.  相似文献   

13.
The E-Screen assay was used to evaluate the estrogenicity of sugar beet by-products obtained from a dairy farm experiencing low success rates of embryo transfer. The beet tailings had ~3-fold the estradiol equivalents of the pelleted beet pulp (3.9 and 1.2 μg estradiol equivalents or E2Eq/kg dry matter, respectively). Whole sugar beets, sugar beet pellets, and shreds from several Midwest US locations were also evaluated by E-Screen. All pellets examined were found to have some estrogenic activity (range ~0.1–2.0 μg E2Eq/kg DM) with a mean of 0.46 μg/kg dry matter and median of 0.28 μg/kg dry matter. Relative E2Eq ranked as follows: pellets?>?shreds?>?most unprocessed roots. Using recommended feeding levels and conservative absorption estimates (10%), the estrogenic activity in the original samples could result in blood estradiol equivalents?≥?those found at estrus (10 pg/mL, cows). Chemical analyses revealed no known phytoestrogens, but the estrogenic mycotoxin, zearalenone, was found in 15 of 21 samples. Of significance to those using the E-Screen are our findings that contradict previous reports: ß-sitosterol has no proliferative effect and genistein’s glucuronidated form—genistin—is equal to genistein in proliferative effect. The latter is the result of deconjugation of genistin to genistein in the presence of fetal bovine serum (determined by LC MSMS). These data show the usefulness and caveats of the E-Screen in evaluation of feedstuffs, and indicate a potential for sugar beet by-products to contain zearalenone at concentrations that may impact reproduction.  相似文献   

14.
The effects of soy isoflavones, genistein and daidzein, which exhibit estrogenic, anti‐estrogenic and/or tyrosine kinase inhibitory activity, on the dendritic morphology of B16 mouse melanoma cells were quantitatively evaluated and compared with those of 17β‐estradiol (Est) and tyrphostin, a tyrosine kinase inhibitor. Dendricity was significantly stimulated in the order of Est >> genistein > daidzein = tyrphostin, but not by glycosides of genistein and daidzein. In competition experiments, Est counteracted the stimulatory activity of genistein and daidzein, but enhanced the activity of tyrphostin additively, suggesting that genistein and daidzein agonized Est. In addition, when the concentration ratios of genistein/Est and daidzein/Est were higher than 5000 and 50 000, respectively, genistein and daidzein agonized Est. In contrast, when the ratio of daidzein/Est was lower than 500, daidzein antagonized Est. Furthermore, genistein and daidzein competed with each other in stimulatory activity. These observations suggest that: 1) dendricity is stimulated by agonists (genistein and daidzein) of Est and tyrosine kinase inhibitors (genistein and tyrphostin), 2) the concentration ratio of isoflavone aglycone/Est is very important as one regulatory factor for estrogenic and/or anti‐estrogenic activity, and 3) daidzein antagonizes not only Est but also genistein. It is concluded that a quantitative and simple dendricity assay using B16 mouse melanoma cells is available to evaluate estrogenic and anti‐estrogenic activity in vitro.  相似文献   

15.
Phosphatidylethanolamine (PE) and cardiolipin (CL) are major components of bacterial and eukaryotic membranes. In bacteria, synthesis of PE usually occurs via decarboxylation of phosphatidylserine (PS) by PS decarboxylases (Psd). CL is produced by various CL synthases (Cls). Membranes of the plant pathogen Xanthomonas campestris predominantly contain PE, phosphatidylglycerol (PG) and CL. The X. campestris genome encodes one Psd and six putative CLs. Deletion of psd resulted in loss of PE and accumulation of PS. The mutant was severely affected in growth and cell size. PE synthesis, growth and cell division were partially restored when cells were supplied with ethanolamine (EA) suggesting a previously unknown PE synthase activity. Via mutagenesis, we identified a Cls enzyme (Xc_0186) responsible for EA‐dependent PE biosynthesis. Xanthomonas lacking xc_0186 not only lost its ability to utilize EA for PE synthesis but also produced less CL suggesting a bifunctional enzyme. Recombinant Xc_0186 in E. coli and in cell‐free extracts uses cytidine diphosphate diacylglycerol (CDP‐DAG) and PG for CL synthesis. It is also able to use CDP‐DAG and EA for PE synthesis. Owing to its dual function in CL and PE production, we consider Xc_0186 the founding member of a new class of enzymes called CL/PE synthase (CL/PEs).  相似文献   

16.
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.  相似文献   

17.
The flavanone naringenin is known to possess only weak estrogenic properties, but some of its derivatives such as 8-prenylnaringenin are potent phytoestrogens. The aim of this study was to further clarify structure-function relationships of flavanones regarding their estrogenic or antiestrogenic properties by characterizing the new chemically synthesized naringenin derivative 7-(O-prenyl)naringenin-4'-acetate (7-O-PN). A yeast based reporter gene assay and MVLN cells, a MCF-7-derived cell line that possesses a luciferase reporter gene under the control of a vitellogenin estrogen responsive element, were used to investigate estrogenic actions of 7-O-PN in vitro. Estradiol (E2) has been used as a positive control. Subsequently a 3-day rat uterotrophic assay was performed to test for estrogenic effects. In addition, mRNA expression of estrogen sensitive genes in the uteri of these rats was measured using real time rtPCR. While E2 leads to a strong dose dependent signal in the yeast based reporter gene assay and in MVLN cells, 7-O-PN shows mild E2 antagonistic properties at concentrations 10(-8) and 10(-7)M, E2 agonistic properties at 10(-6) and 10(-5)M in MVLN cells and no effects on the yeast based system. In contrast to E2 treatment, 7-O-PN treatment did not increase uterus wet weight compared to the negative control. These findings are supported by mRNA expression studies of proliferation markers. Additionally, mRNA expression studies of estrogen regulated genes revealed very strong antiestrogenic properties of 7-O-PN regarding regulation of complement C3 expression while some estrogenic effects could be observed on the expression of estrogen receptor beta, clusterin and possibly on progesterone receptor and vascular endothelial growth factor.  相似文献   

18.
Chromatographic investigation of a methanolic extract of white lupin roots has revealed the presence of six new dihydrofuranoisoflavones (lupinisoflavones A-F). Three monoprenylated (3,3-dimethylallyl-substituted) isoflavones (wighteone, luteone and licoisoflavone A), two diprenylated isoflavones [6,3′-di(3,3-dimethylallyl)genistein (lupalbigenin) and 6,3′-di(3,3-dimethylallyl)-2′-hydroxygenistein (2′-hydroxylupalbigenin)] and two pyranoisoflavones (parvisoflavone B and licoisoflavone B) have also been isolated from the same source. In addition to genistein, leaf extracts of L. italbus contain 3′-O-methylorobol which is presumed to be the precursor of lupisoflavone [5,7,4′-trihydroxy-3′-methoxy-6-(3,3-dimethylallyl)isoflavone]. Probable biogenetic relationships between the prenylated, and dihydrofurano-and pyrano-substituted isoflavones in roots and leaves of L. albus are briefly discussed.  相似文献   

19.
《Phytochemistry》1986,25(10):2351-2355
From the stem bark of three previously uninvestigated Garcinia species a number of xanthones have been isolated including three that appear to be novel. The novel compounds are characterized as isocowanin (8-geranyl-4-(3,3-dimethylallyl)-7-methoxy-1,3,6-trihydroxyxanthone), isocowanol (8-geranyl-4-(3-hydroxymethyl-3-methylallyl)-7-methoxy-1,3,6-trihydroxyxanthone) and nervosaxanthone (4,8-di(3,3-dimethylallyl)-2-(1,1-dimethylallyl)-1,3,5,6-tetrahydroxyxanthone). The chemotaxonomic significance of oxygenation patterns in these xanthones is briefly discussed.  相似文献   

20.
Five prenylated flavonoids, 8-(1,1-dimethylallyl)genistein (1), 5,7,3',4'-tetrahydroxy-2',5'-di(3-methylbut-2-enyl)isoflavone (2), 5,7,3'-trihydroxy-2'-(3-methylbut-2-enyl)-4',5'-(3,3-dimethylpyrano)isoflavone (3), (2R)-5,2',4'-trihydroxy-8,5'-di(3-methylbut-2-enyl)-6,7-(3,3-dimethylpyrano)flavanone (4a) and (2S)-5, 2', 4'-trihydroxy-8,5'-di(3-methylbut-2-enyl)-6,7-(3,3-dimethylpyrano)flavanone (4b), were isolated from the roots of Moghania philippinensis. The structures of these compounds were determined on the basis of spectroscopic and chemical means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号