首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2,4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D, and this fact allows presumptive transconjugants obtained in gene transfer studies to be selected by plating on media containing 2,4-D as the carbon source. Use of this donor counterselection approach enabled detection of plasmid pJP4 transfer to indigenous populations in soils and under conditions where it had previously not been detected. In Madera Canyon soil, the sizes of the populations of presumptive indigenous transconjugants were 107 and 108 transconjugants g of dry soil−1 for samples supplemented with 500 and 1,000 μg of 2,4-D g of dry soil−1, respectively. Enterobacterial repetitive intergenic consensus PCR analysis of transconjugants resulted in diverse molecular fingerprints. Biolog analysis showed that all of the transconjugants were members of the genus Burkholderia or the genus Pseudomonas. No mercury-resistant, 2,4-D-degrading microorganisms containing large plasmids or the tfdB gene were found in 2,4-D-amended uninoculated control microcosms. Thus, all of the 2,4-D-degrading isolates that contained a plasmid whose size was similar to the size of pJP4, contained the tfdB gene, and exhibited mercury resistance were considered transconjugants. In addition, slightly enhanced rates of 2,4-D degradation were observed at distinct times in soil that supported transconjugant populations compared to controls in which no gene transfer was detected.  相似文献   

2.
A model system was established to determine whether plasmid transfer occurs in soil and how various environmental conditions and cellular energy states affect the rate of plasmid transfer. Different donor and recipient bacteria were inoculated into sterile sandy lutitic soil microcosms. Dispersion studies were performed with a multipoint inoculator sampler. Transconjugant cells were enumerated by direct plating on antibiotic-amended LB medium. The influences of soil moisture (6.7 to 60%), incubation temperature (4° to 44°C) and pH (5.3 to 9.2) on cell dispersal and on plasmid transfer were examined. Maximum transfer frequencies were observed at: 20% of moisture content, pH between 7 and 8, and 30°C. These results indicate that plasmid transfer may occur in soil and that environmental conditions may significantly affect the rate of transfer.  相似文献   

3.
Transfer of the Pea Symbiotic Plasmid pJB5JI in Nonsterile Soil   总被引:7,自引:5,他引:2       下载免费PDF全文
Transfer of the pea (Pisum sativum L.) symbiotic plasmid pJB5JI between strains of rhizobia was examined in sterile and nonsterile silt loam soil. Sinorhizobium fredii USDA 201 and HH003 were used as plasmid donors, and symbiotic plasmid-cured Rhizobium leguminosarum 6015 was used as the recipient. The plasmid was carried but not expressed in S. fredii strains, whereas transfer of the plasmid to R. leguminosarum 6015 rendered the recipient capable of nodulating pea plants. Confirmation of plasmid transfer was obtained by acquisition of plasmid-encoded antibiotic resistance genes, nodulation of pea plants, and plasmid profiles. Plasmid transfer in nonsterile soil occurred at frequencies of up to 10−4 per recipient and appeared to be highest at soil temperatures and soil moisture levels optimal for rhizobial growth. Conjugation frequencies were usually higher in sterile soil than in nonsterile soil. In nonsterile soil, transconjugants were recovered only with strain USDA 201 as the plasmid donor. Increasing the inoculum levels of donor and recipient strains up to 109 cells g of soil−1 increased the number of transconjugants; peak plasmid transfer frequencies, however, were found at the lower inoculum level of 107 cells g of soil−1. Plasmid transfer frequencies were raised in the presence of the pea rhizosphere or by additions of plant material. Transconjugants formed by the USDA 201(pJB5JI) × 6015 mating in soil formed effective nodules on peas.  相似文献   

4.
Donor and recipient counter selection was evaluated by selecting bacteria that received plasmid RP4 by conjugation on filters and in lake water microcosms. Three counter selection systems were compared; (i) Use of antibiotic-resistant recipients, (ii) use of an auxotrophic donor, and (iii) use of a donor with chromosomal suicide genes. Transfer efficiencies of transconjugants per recipient obtained with the three different counter selection systems in filter-matings were not significantly different. Some nalidixic acid-resistant recipients became partly sensitive to nalidixic acid after receiving the plasmid. Use of an auxotrophic donor was a feasible and easy way to recover indigenous transconjugants. A strain with two copies of the suicide gene gef was successfully eliminated in filter-matings, but elimination of the donor in microcosms by induction of the suicide genes did not succeed. Thus, this counter selection system was not usable in microcosm experiments. Received: 3 March 1998 / Accepted: 15 May 1998  相似文献   

5.
The transfer of a genetically marked derivative of plasmid RP4, RP4p, from Pseudomonas fluorescens to members of the indigenous microflora of the wheat rhizosphere was studied by using a bacteriophage that specifically lyses the donor strain and a specific eukaryotic marker on the plasmid. Transfer of RP4p to the wheat rhizosphere microflora was observed, and the number of transconjugants detected was approximately 10 transconjugants per g of soil when 10 donor cells per g of soil were added; transfer in the corresponding bulk soil was slightly above the limit of detection. All of the indigenous transconjugants which we analyzed contained a 60-kb plasmid and were able to transfer this plasmid to a Nx RpP. fluorescens recipient strain. The indigenous transconjugants were identified as belonging to Pseudomonas spp., Enterobacter spp., Comamonas spp., and Alcaligenes spp.  相似文献   

6.
Conjugal transfer of the small plasmid pUB110 betweenBacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 and 22–23°C.  相似文献   

7.
8.
A mathematical model was developed and used to simulate the long-term dynamics of growth and plasmid transfer in nutrient-limited soil microcosms of Streptomyces lividans TK24 carrying chromosomal resistance to streptomycin, S. lividans 1326; and S. violaceolatus ISP5438. Donor, recipient, and transconjugant survival was modelled by an extension to the Verhulst logistic equation which takes account of nutrient limitation, and plasmid transfer was modelled by a mass action model. Rate parameters were derived from experimental data on the early stages of the development of sterile systems. The model predicted donor, recipient, and transconjugant populations in 2.4-h (0.1-day) steps and was tested against the long-term behavior of the experimental sterile systems and independent experimental data on nonsterile systems. Bacteria were periodically enumerated onto selective media over a 20-day period. The effects of long-term nutrient-moisture depletion were correctly predicted.  相似文献   

9.
利用DNA分子克隆技术及遗传重组方法,在E.herbicola CSH1065质粒上插入了Km_R及Mob基因,利用细菌间的接合转移,使E.herbicola CSH1065质粒转移到E.coli HB101中,从而获得了E.herbicola CSH1065的Fib(fungi inhibition)基因在E.coli HB101中的表达,进一步证明E.herbicola CSH1065 Fib基因功能只涉及其细胞内的大质粒,与其染色体基因组无关,其黄色色素基因与Fib功能无关。这些结果还为DNA分子杂交方法所证实。  相似文献   

10.
Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically isolated bacteria in nonsterile soil, using burrowing earthworms as a biological factor to facilitate cell-to-cell contact.  相似文献   

11.
增强型绿色荧光蛋白(EGFP, enhanced green fluorescent protein)、myc抗原和6×His已在众多真核表达载体中用作重组蛋白的表达标记,EGFP能发出的绿色荧光,myc抗原能用相应的抗体检测,6×His能被相应的树脂特异吸附。但目前为止,没有一个质粒表达载体能够同时整合三者的功能。本研究构建了一个能够同时整合EGFP、myc抗原和6×His功能的新型真核质粒表达载体,我们将其命名为pcDNA6/myc-his-EGFP B。值得注意的是,为确保目的基因与EGFP基因融合表达后,融合表达产物各组成部分能够保持原有的生物活性,我们运用LINKER程序在EGFP基因的5'端设计了一段编码八肽的连接DNA序列。将一段含有人白细胞介素2(IL-2, human interleukin 2)信号肽编码序列的基因亚克隆进pcDNA6/myc-his-EGFP B的多克隆位点中,使之与EGFP、myc抗原和6×His融合表达,构建成质粒pMHES。用pcDNA6/myc-his-EGFP B和pMHES转染2.2.15细胞,48 h后成功观察到绿色荧光;用pcDNA6/myc-his-EGFP B尾静脉注射Balb/c小鼠,8 h后在小鼠肝脏冰冻切片中同样观察到绿色荧光。用同源建模软件Modeller8V2模拟IL-2与EGFP、myc抗原和6×His融合表达产物的三维结构,结果表明:IL-2、EGFP、myc和6×His各部分互不干扰,连接八肽具有一定的柔性。以上结果表明pcDNA6/myc-his-EGFP B可望作为外源基因在哺乳动物细胞中表达研究和基因治疗的新型载体。  相似文献   

12.
Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum) WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides) RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.  相似文献   

13.
目的建立利用斑马鱼胚胎快速鉴定真核质粒中目的基因表达的实验体系。方法选20枚斑马鱼受精卵,在显微镜下每隔1h记录胚胎的发育情况。另选250枚单细胞期斑马鱼胚胎,平均分成5组,一组胚胎作为对照,剩余4组分别向胚胎的单细胞内注射pEGFP-N1(真核表达质粒)、pCMV-DsRed-Express2(真核表达质粒)、pET28-GFP(原核表达质粒)、pET28-RFP(原核表达质粒)质粒,在不同时间点连续观察绿色荧光及红色荧光的表达情况。另选600枚单细胞期斑马鱼胚胎,平均分成3组,一组胚胎作为对照,一组向胚胎单细胞内注射pEGFP-N1质粒,另外一组向胚胎单细胞内注射pEGFP-N1-MUC1外源基因融合重组质粒,注射4h后在荧光显微镜下观察绿色荧光的表达情况,并用RT-PCR的方法检测目的基因MUC1mRNA的转录情况。结果注射pEGFP-N1、pCMV-DsRed-Express2真核表达质粒的胚胎,注射4h后分别观察到很强的绿色荧光及红色荧光;注射pET28-GFP、pET28-RFP原核表达质粒的胚胎,10h内都未观察到绿色荧光及红色荧光;注射pEGFP-N1-MUC1外源基因融合质粒,注射4h后同样...  相似文献   

14.
The majority of eukaryotic genes consist of exons and introns. Introns can be inserted either between codons (phase 0) or within codons, after the first nucleotide (phase 1) and after the second (phase 2). We report here that the frequency of phase 0 increases and phase 1 declines from the 5′ region to the 3′ end of genes. This trend is particularly noticeable in genomes of Homo sapiens and Arabidopsis thaliana, in which gains of novel introns in the 3′ portion of genes were probably a dominant process. Similar but more moderate gradients exist in Drosophila melanogaster and Caenorhabditis elegans genomes, where the accumulation of novel introns was not a prevailing factor. There are nine types of exons, three symmetric (0,0; 1,1; 2,2) and six asymmetric (0,1; 1,0; 1,2; 2,1; 2,0; 0,2). Assuming random distribution of different types of introns along genes, one can expect the frequencies of asymmetric exons such as 0,1 and 1,0 or 1,2 and 2,1 to be approximately equal, allowing for some variation caused by randomness. The gradient in intron distribution leads to a small but consistent and statistically significant bias: phase 1 introns are more likely at the 5′ ends and phase 0 introns are more likely at the 3′ ends of asymmetric exons. For the same reason, the frequency of 0,0 exons increases and the frequency of 1,1 exons decreases in the 3′ direction, at least in H. sapiens and A. thaliana. The number of introns per gene also affects the distribution and frequency of phase 0 and 1 introns. The gradient provides an insight into the evolution of intron-exon structures of eukaryotic genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

15.
The transfer of a genetically marked derivative of plasmid RP4, RP4p, from Pseudomonas fluorescens to members of the indigenous microflora of the wheat rhizosphere was studied by using a bacteriophage that specifically lyses the donor strain and a specific eukaryotic marker on the plasmid. Transfer of RP4p to the wheat rhizosphere microflora was observed, and the number of transconjugants detected was approximately 103 transconjugants per g of soil when 107 donor cells per g of soil were added; transfer in the corresponding bulk soil was slightly above the limit of detection. All of the indigenous transconjugants which we analyzed contained a 60-kb plasmid and were able to transfer this plasmid to a Nxr RprP. fluorescens recipient strain. The indigenous transconjugants were identified as belonging to Pseudomonas spp., Enterobacter spp., Comamonas spp., and Alcaligenes spp.  相似文献   

16.
Gene transfer of the conjugative plasmid pBF1 from Pseudomonas putida to indigenous bacteria in seawater was investigated with a detection system for gene transfer based on the green fluorescent protein (GFP) (C. Dahlberg et al., Mol. Biol. Evol. 15:385–390, 1998). pBF1 was tagged with the gfp gene controlled by a lac promoter which is down regulated in the donor cell by a chromosomal repressor (lacIq). The plasmid donor cells (Pseudomonas putida KT2442) subsequently do not express gfp. Transfer to recipient strains lacking the repressor results in expression of gfp. The transconjugant can subsequently be detected by epifluorescence microscopy on a single-cell level. By using this method, transfer of pBF1::gfp and expression of the gfp gene were first shown to occur during nutrient-limiting conditions to several defined recipient bacteria in artificial seawater. Second, we measured transfer of pBF1 from P. putida to the marine bacterial community directly in seawater samples, on a single-cell level, without limiting the detection of gene transfer to the culturable fraction of bacteria. Plasmid transfer was detected on surfaces and in bulk seawater. Seawater bacteria with different morphologies were shown to receive the plasmid. Gene transfer frequencies of 2.3 × 10−6 to 2.2 × 10−4 transconjugants per recipient were recorded after 3 days of incubation.  相似文献   

17.
18.
将HCVIRES插入双报告基因海肾荧光素酶 (Rluc)基因和萤火虫荧光素酶 (Fluc)基因之间 ,建立了“依赖帽子的扫描机制”翻译表达Rluc ,HCVIRES调控Fluc翻译的双顺反子表达载体pCI Rluc HCVIRES Fluc ,通过酶切反应及转染HepG2细胞鉴定双荧光素酶瞬间表达活性等试验 ,证实获得了表达双荧光素酶的双顺反子载体 .并应用水压转染法将双顺反子表达质粒导入小鼠体内 ,在小鼠肝脏检测到高水平表达的Rluc和Fluc .该研究成功构建一种HCVIRES介导萤火虫荧光素酶基因表达的双顺反子载体 ,并在HepG2细胞及小鼠体内进行了瞬时表达 ,为进一步建立稳定评价靶向HCVIRES药物作用的细胞及小动物模型研究奠定了基础  相似文献   

19.
20.
The growth and survival of strains of Streptomyces lividans and S. violaceolatus in sterile and nonsterile soil was investigated by using inoculated soil microcosms run as batch systems. It was evident that, after an initial short mycelial growth phase of 2 to 3 days, sporulation occurred and inoculants survived as spores. The transfer of a high-copy-number, self-transmissible plasmid, pIJ673, was detected by using intra- and interspecific crosses. The initial detection of transconjugants correlated with the development of the mycelial state of the inoculants (as confirmed by scanning electron microscopy) after 2 days of incubation. Subsequent spread of the plasmid was attributed to spread within existing mycelium followed by sporulation. In natural soil, inoculant numbers remained constant or declined, but plasmid transfer was readily detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号