首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
颗粒状固定化青霉素酰化酶的研究   总被引:10,自引:0,他引:10  
韩辉  徐冠珠 《微生物学报》2001,41(2):204-208
将巨大芽孢杆菌 (Bacillusmegaterium)胞外青霉素酰化酶通过共价键结合到聚合物载体EupergitC颗粒环氧基团上 ,制成的颗粒状固定化青霉素酰化酶表现活力达 1 40 0 μ/g左右。固定化酶水解青霉素的最适 pH8 0 ,最适温度为 55℃。在pH6 0~ 8 5、温度低于 40℃时固定化酶活力稳定。在 pH8 0、温度 37℃时 ,固定化酶对青霉素的表现米氏常数Ka为 2×1 0 - 2 mol/L ;苯乙酸为竞争性抑制剂 ,抑制常数Kip为 2 8× 1 0 - 2 mol/L ;6 APA为非竞争性抑制剂 ,抑制常数Kia为 0 1 2 5mol/L。固定化酶水解青霉素 ,投料浓度为 8% ,在使用 2 0 0批后 ,保留活力 80 %左右 ,6 APA收率平均达 89 48%。  相似文献   

2.
为有效提高D-泛解酸内酯水解酶的利用效率,笔者选择合适的载体对酶进行固定化,在优化固定化条件的同时研究固定化酶的最佳反应条件和酶学性质。结果表明,选择的最佳固定化载体为树脂D380,最佳固定化条件为:酶的吸附添加量为30 U(以1 g湿树脂计),吸附pH 7.0,吸附温度30℃,吸附时间5 h,戊二醛体积分数0.1%,交联时间1 h。在最优条件下得到的固定化酶的比酶活为(11.5±0.12) U/g。固定化酶的最适反应温度为37℃,最适反应pH为7.5。游离酶和固定化酶的动力学常数K_m分别为170.25和207.60 mmol/L。Ca~(2+)对酶促反应有激活作用,Mn~(2+)对该酶有较强的抑制作用。  相似文献   

3.
青霉素酰化酶在新型复合载体上的固定化研究   总被引:1,自引:0,他引:1  
通过γ-氯丙基三甲氧基硅烷的媒介,将聚乙烯亚胺(PEI)化学偶联在硅胶微粒表面,制备了新型复合载体PEI/silica gel,然后通过双官能团试剂戊二醛的作用,将青霉素酰化酶固定在复合载体上;考察了戊二醛用量、pH值、固定化温度、固定化时间及给酶量等条件对固定化青霉素酰化酶表观活力、活性回收率等性能的影响;并通过测定复合载体在固定化前的ζ电位,探索了复合载体PEI/silica gel固定化酶的作用机理。研究结果表明,由于PEI分子链中含有大量胺基,共价键联与物理吸附相结合,使青霉素酰化酶被快速稳定地固定化,并具有高的催化活性与活力回收率。复合载体PEI/silica gel(0.5 g)固定青霉素酰化酶的适宜固定化条件为:固定化温度为30℃;固定化时间为14~15 h;戊二醛用量为1.2 mmol/g;pH=7.92;给酶量为0.1 mL/g。  相似文献   

4.
目的:以活性炭为载体固定化粪产碱杆菌来源的青霉素G酰化酶,考察固定化酶的性质。方法:对影响酶固定化的因素优化筛选,确定有显著影响的因素:pH、离子强度、酶量、固定化时间进行L934的正交实验,获得最佳固定化条件,并对固定化酶的最适反应温度、pH及批次稳定性进行研究。结果:最佳固定化条件为:载体0.3g,酶量5mL,总反应体系为12mL,离子强度1mol/L,温度4℃,pH 7.0,固定化40h;最高固定化酶活性为135.9U/g湿载体。固定化酶性最适反应温度为55℃,最适pH为10,重复使用12次后没有活性损失。结论:活性炭吸附固定化青霉素G酰化酶的活性高,批次反应稳定,具有工业应用潜力。  相似文献   

5.
在浸润条件下,以0.5%(v/v)戊二醛交联的高分子膜尼龙载体固定化木瓜蛋白酶。对固定化条件进行了优化,比较了固定化酶与游离酶的酶学参数。结果表明,4℃、pH6.0条件下,将膜载体浸润于2mg/mL酶液中5h,固定化酶活为303.4U/g。固定化酶最适反应pH为6.0~7.0,最适反应温度为65℃。其pH稳定性、热稳定性均比游离酶高。  相似文献   

6.
巨大芽孢杆菌青霉素G酰化酶共价结合在新型环氧-氨基型载体ZH-HA 上,通过对酶浓度、固定化时间、pH以及缓冲液浓度等条件的考察,确定了最优固定化条件:50 mg比活力6000 U/g的巨大芽孢杆菌青霉素G酰化酶蛋白和1g ZH-HA悬浮于pH 9.01 mol/L磷酸缓冲液,室温搅拌6 h,制得固定化巨大芽孢杆菌青霉素G酰化酶,活力2126 U/g湿载体,活力回收率7.67%.比较研究了固定化酶与原酶性质,原酶最适温度45℃,最适pH为8.0.固定化酶则分别是50℃和9.0,分别比溶液酶偏移5℃、1.0个pH单位.经过40批连续水解青霉素G钾盐,固定化巨大芽孢杆菌青霉素酰化酶仍保持80%的活力,显示出良好的工作稳定性.  相似文献   

7.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

8.
固定化在多孔玻璃上的青霉素酰化酶性质   总被引:1,自引:0,他引:1  
从大肠杆菌As 1.76提取青霉素酰化酶,经纯化,用戊二醛圈定在氯烷基硅烷化多孔玻璃上。初步摸索了固定化条件。固定化酶的米氏常数为7.7 x 10-4M,比自然酶大10倍,但竞争性抑制剂苯乙酸对固定化酶和自然酶的抑制常数基本相同,固定化酶的最大反应速度为5.8×10-2M/min,比自然酶大2.5倍,水解NIPAB的最适pH为7.O,比自然酶低1个pH单位,最适反应温度比自然酶低i0℃,固定化酶在pH 5.8—8.0之间较稳定,较自然酶的范围略窄;固定化酶在40℃以下稳定,而自然酶在45℃以下稳定。  相似文献   

9.
本文就几种纤维素和无机吸附载体对青霉素酰化酶的吸附作用及其固定化进行了研究,结果表明:DEAE-纤维素、EYI-纤维素、微晶纤维素、CM-纤维素、羟基磷灰石、中性氧化铝、硅藻土及粉末状膨润土对青霉素酰化酶都有很强的吸附能力,其固定化青霉素酰化酶的比活分别在1.47~19.43u/g之间,活力回收率为16.3%至84%,几种固定化酶的最适pH均较游离酶低,且其操作稳定性较好。  相似文献   

10.
聚丙烯腈纤维固定化青霉素酰化酶性质的研究   总被引:3,自引:0,他引:3  
将巨大芽孢杆菌(Bacillusmegaterium)青霉素酞化酶连接到聚丙烯腈纤维载体上,制成固定化青霉素酰化酶。其表现活力约为2000u/g。水解青霉素G的最适温度为50℃;最适PH为9.0;在PHS.5~10.3、温度50℃以下酶的活力稳定;表观米氏常数Ka为1.33×10-8mol/L;最大反应速度Vm为2.564mmol·min-1;苯乙酸为竞争性抑制剂,抑制常数为0.16mol/L。水解10%的青霉素G钾盐溶液,使用20批,保留酶活力80%。  相似文献   

11.
Human urokinase was immobilized on an ethylene vinyl acetate copolymer surface. Soluble urokinase showed its maximum activity at pH 8.5, while the immobilized enzyme was most active at pH 9.0. Apparently, the shift in optimal pH was due to the polyanionic nature of the carrier surface on which the enzyme was immobilized. Optimal temperatures of soluble urokinase and immobilized enzyme were identical, i.e., 37 degrees C. The stability of immobilized enzyme against thermal degradation was several times higher than that of the soluble enzyme. Its stability at higher temperatures is one of the main reasons for the clinical use of immobilized urokinase as an antithrombotic material.  相似文献   

12.
Summary Continuous production ofL-malic acid from fumaric acid using immobilized microbial cells was investigated. Several microorganisms having fumarase activity were immobilized into a polyacrylamide gel lattice. Among the microorganisms tested, immobilizedBrevibacterium ammoniagenes IAM 1645 showed the highest enzyme activity, but produced an unwanted by-product, succinic acid. Conditions for suppression of this side reaction were investigated, and bile extract treatment of immobilized cells was found to be effective.The bile extract treatment of immobilized cells also resulted in a marked increase of reaction rate forL-malic acid formation.No difference was observed between the native enzyme and immobilized cells in optimal pH and temperature of the enzyme reaction.The effect of temperature on the reaction rate and the stability of fumarase activity of an immobilized cell column were investigated under conditions of continuous enzyme reaction. The decay of enzyme activity during continuous enzyme reaction was expressed by an exponential relationship. Half-life of the fumarase activity of the immobilized cell column at 37°C was calculated to be 52.5 days.Presented at the Annual Meeting of the Society of Fermentation Technology, Japan, Osaka, Japan, October 30, 1975.  相似文献   

13.
丝素蛋白膜固定β-葡萄糖苷酶及其改良食品风味的研究   总被引:13,自引:0,他引:13  
从黑曲霉发酵液中提取β-葡萄糖苷酶酶液,用丝素蛋白将其固定,探讨酶固定化的影响因素及固定化酶的性质。β-葡萄糖苷酶的固定化条件为:取0.8 Uβ-葡萄糖苷酶与4.0%戊二醛和10%牛血清白蛋白混合(体积比为5:3:2),涂布于1cm2丝素蛋白膜上交联作用8h。在此条件下获得的固定化酶性质为:最适温度为60℃,比游离酶提高10℃;最适pH为5.0;t1/2为75℃,热稳定性比游离酶有明显改善;最佳反应时间为15 min;与游离酶相比,与底物亲和力降低。将固定化酶膜应用于果汁、果酒、茶汁等食品的增香,经感官鉴评,样品间存在显著差异,进一步经色谱一质谱联用仪分析,发现酶解后的样品,原有香气物质有不同程度的增加,4-萜品醇增加了107%、紫苏醇增加了42%,还有三种未知的香气组分分别增加了251%、79%和33%;并有新风味物质——芳樟醇、香叶醇和2-羟基-5-甲基苯乙酮产生,显示了较好增香效果。  相似文献   

14.
为提高烟酰胺腺嘌呤二核苷酸(NAD)激酶的稳定性,采用复合膜对NAD激酶进行固定化研究。选用聚乙烯醇(PVA)、聚乳酸(PLA)、海藻酸钠(SA)和明胶(GEL)膜材料固定化NAD激酶。通过单因素实验确定最佳固定化条件为:PVA∶GEL为4∶1,加酶量为0.6 mL,固定化时间为6h,固定化温度为35℃,此时酶活力回收率达到最高值84%。固定化酶酶学性质分析结果表明,与游离酶进行比较,固定化后NAD激酶的最适温度由50℃提高至55℃,最适pH由8.0降至7.0,NAD激酶的热稳定性和pH稳定性均得到显著提高,但固定化酶的亲和力降低。固定化NAD激酶重复利用6次后,酶活性依然可维持初始酶活性的75%以上,表明聚乙烯醇-明胶复合膜固定化酶具有良好的操作稳定性。  相似文献   

15.
Cotton fabric was first oxidized with sodium periodate, and then employed to immobilize catalase. Optimization studies for oxidation of the fabric and immobilization of the enzyme were performed. The properties of the immobilized catalase were examined and compared with those of the free enzyme. A high activity of the immobilized enzyme was obtained when the fabric was oxidized at 40°C and pH 6.0 for 8h in a bath containing 0.20 mol L?1 sodium periodate and the enzyme was immobilized at 4°C for 24h with a catalase dosage of 120.0 U mL?1. The immobilized enzyme exhibited optimum activity at 40°C, while the free enzyme had optimal temperature of 30°C, suggesting that the immobilized catalase could be used in a broader temperature range. Both the immobilized and free enzyme had pH optima of 7.0. The staining test and reusability showed that the catalase was fixed covalently on the oxidized cotton fabric.  相似文献   

16.
游离及固定化果糖基转移酶部分酶学性质的比较研究   总被引:4,自引:0,他引:4  
 从诱变、筛选的米曲霉GX0 0 10菌株所产生的果糖基转移酶 ,经过纯化和固定化操作分别制备游离酶和固定化酶 ,对两者的酶学性质进行了比较研究 .结果表明 ,两者在蔗糖转化为蔗果低聚糖的酶促反应中 ,最适pH为 5 5,在pH5 0~ 7 5之间酶活性相对稳定 .游离酶和固定化酶的适宜温度范围分别是 4 5~ 52℃和 4 0~ 55℃ .在 55℃保温 60min ,酶活性保存率分别是 61 6%和 87 5% .固定化酶的热稳定性提高 .0 1mmol LHg2 +和 1mmol LAg+能完全抑制游离酶的活性 ,但只能部分抑制固定化酶的活性 ,1mmol L的Ti2 +能完全抑制两者的活性 .以蔗糖为底物时 ,游离酶的米氏常数Km=2 15mmol L ,而固定化酶Km =386mmol L .游离酶只能使用一次 ,固定化酶反复使用 54次后 ,剩余活力为 55 2 % .用 55% (W V)蔗糖溶液与固定化酶在pH5 0 ,4 6℃下作用 12h ,可获得61 5% (总低聚糖 总糖 )产物 ,其中蔗果五糖含量达到 7 2 % .  相似文献   

17.
纳米磁性壳聚糖微球固定化酵母醇脱氢酶的研究   总被引:1,自引:0,他引:1  
建立了以纳米级磁性壳聚糖微球(magnetic chitosan microspheres , M-CS)为载体固定化酵母醇脱氢酶(yeast alcohol dehydrogenase,YADH)的方法,优化了YADH的固定化条件,考察了固定化酶的性质。结果表明,M-CS 呈规则的圆球形,粒径在30nm 左右,具有较好的磁响应性。酵母醇脱氢酶固定化适宜条件为:50 mg 磁性壳聚糖微球,加入20mL 0.25 mg/mL 酵母醇脱氢酶(蛋白质含量)磷酸盐缓冲液(0.05 mol/L ,pH 7.0) ,在4 ℃固定2h。M-CS 容易吸附酵母醇脱氢酶,但吸附的酶量受载体与酶的比例、溶液的离子浓度、溶液pH的影响明显,而温度对吸附的酶量的影响则相对较弱。相对于游离的酵母醇脱氢酶,固定化酶的最适温度略有升高,可明显改善其热稳定性、酸碱稳定性、操作稳定性和贮存稳定性。  相似文献   

18.
 尼龙经CaCl_2和H_2O的甲醇溶液处理,稀HCl水解用戊二醛交联以制备固定化木瓜蛋白酶。在溶液酶浓度为1mg/mL pH7.5—8.0、4—15℃条件下固定3h,活力回收42.5%,相对活力46%,偶联效率52%,半衰期72天。溶液酶Km值和固定化酶K_m~(aPP)值(底物酪蛋白W/V,%)分别为0.28%和0.35%。溶液酶和固定化酶分别在pH6.5和pH8.0以下活力稳定;最适pH分别为7.0和8.0;在65℃处理30min活力分别为原有活力的89%和66%。当酪蛋白浓度为1.5%和2.5%以上活力分别受到抑制。固定化酶在6mol/L脲中连续浸洗5次共6h其活力稳定,仍有原活力的44.4%;用以处理啤酒浊度比对照下降了2-11倍;蛋白质含量下降了55%;冷藏(4℃)120天,无冷混浊发生;同时各项理化指标和风味不变。  相似文献   

19.
β-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, β-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum β-galactosidase adsorbed on these membranes was 1.6 g/m2, however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m2. The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (K(m)) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (V(max)) remained almost constant.  相似文献   

20.
Invertase from S. cerevisiae has been immobilized by ionic adsorption on Sepabeads fully coated with PEI. The enzyme was strongly adsorbed on the support (no desorption of the invertase was found under conditions in which all of the enzyme was released from conventional anionic exchanger supports (e.g., DEAE-agarose)). Nevertheless, the enzyme could still be desorbed after its inactivation, and new fresh enzyme could be adsorbed on the supports without detrimental effects on enzyme loading. This is a multimeric enzyme, its minimal oligomerization active state being the dimer, but under certain conditions of pH and concentration it may give larger multimers. Very interestingly, results suggested that the adsorption of the enzyme on this large and flexible polymeric bed was able to freeze some of the different oligomeric structures of the enzyme. Thus, we have found that the enzyme immobilized at certain pH values (pH 8.5) and high enzyme concentration, in which the main enzyme structure is the tetramer, was more stable than immobilized preparations produced in conditions under which oligomerization was not favorable (dimers at low enzyme concentration) or it was too high (e.g., hexamers-octamers at low pH value). The optimal enzyme preparation remained fully active after a 15-day incubation at 50 degrees C and pH 4.5 (conditions of standard industrial use) and presented an optimal temperature approximately 5 degrees C higher than that of soluble enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号