首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The nitric oxide/soluble guanylyl cyclase/cGMP-dependent protein kinase (NO/sGC/PKG) cascade has been shown to affect important functions of circulating neutrophils. We demonstrate that neutrophils isolated from rats treated intraperitoneally with peptone protease cannot use this signaling pathway. Although PKG was detected at both the mRNA and protein levels in peripheral blood neutrophils (PBNs) of control rats, it was expressed neither in PBNs nor in peritoneal exudate neutrophils (PENs) of provoked rats. Also, mRNA of the alpha and beta chains of heterodimeric sGC was present in PBNs, but absent in PENs. Consistently, PBNs responded to activators of sGC with cGMP synthesis, while PENs did not. These results showed that neutrophils recruited by a provoking agent lost PKG and, in the case of PENs, also sGC and thus the capacity to respond to NO with cGMP signaling. We speculate that such downregulation of the sGC/PKG pathway is likely a result of the high activity of inducible NO synthase observed in inflammatory neutrophils.  相似文献   

4.
The insulin-sensitive cAMP phosphodiesterase (phosphodiesterase) in rat adipocytes is a membrane-bound low Km enzyme that can be recovered in a crude microsomal fraction (Fraction P-2). The action of this enzyme to hydrolyze cAMP is known to be inhibited by cGMP; nevertheless, it was found in our present study that under selected conditions, the enzyme can also be stimulated by cGMP as well as some other nucleotide derivatives. The maximum cGMP-dependent stimulation was observed when the enzyme in Fraction P-2 was incubated with 10 microM cGMP for 5-20 min at 37 degrees C in the presence of Mg2+, washed, and then assayed in the absence of added cGMP. The level of this stimulation was close to, but less than, that achieved by insulin in intact cells. The actions of the cGMP- and insulin-stimulated enzymes to hydrolyze labeled cAMP were inhibited in an identical manner by cilostamide (Ki = 0.10 microM), griseolic acid (Ki = 0.19 microM), unlabeled cAMP (Km = 0.20 microM), and cGMP (Ki = 0.16 microM), all added to the assay system. Also, the basal, insulin-stimulated, and cGMP-activated enzymes were identically inhibited by a polyclonal antibody raised against a purified membrane-bound low Km phosphodiesterase from bovine adipose tissue. When the same antibody was used for the Western blot analysis of Fraction P-2, it immunoreacted with a single band of protein (165 kDa). These observations indicate that the insulin-sensitive phosphodiesterase in rat adipocytes can be stimulated with 10 microM cGMP and that this stimulation is detectable only after the nucleotide has been eliminated since the enzyme would be strongly inhibited by the nucleotide if the latter exists in the assay system. It is proposed that the insulin-sensitive phosphodiesterase, which is often referred to as a Type IV enzyme, is functionally similar to the Type II enzymes that are known to be stimulated by a low concentration of cGMP and inhibited by higher concentrations of the same nucleotide.  相似文献   

5.
6.
Membranes prepared from highly purified rat liver lysosomes contain endogenous protein-phosphorylation activities. The transfer of phosphate to membrane fractions from [gamma-32P]ATP was analyzed by gel electrophoresis under acidic denaturing conditions. Two phosphopeptides were detected, with molecular weights of 3,000 and 14,000. Phosphorylation of these proteins was unaffected by the addition of cAMP, cGMP, or the heat-stable inhibitor of cAMP-dependent protein kinase. No additional phosphorylation was observed when cAMP-dependent protein kinase was included in the reaction or when exogenous protein kinase substrates were added. The 14,000-dalton 32P-labeled product was formed rapidly in the presence of low concentrations (250 microM) of either Ca2+ or Mg2+. This product was labile under both acidic and alkaline conditions, suggesting that this protein contains an acyl phosphate, present presumably as a catalytic intermediate in a phosphotransferase reaction. The lower molecular weight species required a high concentration (5 mM) of Mg2+ for phosphorylation, and micromolar concentrations of Ca2+ stimulated the Mg2+-dependent activity. The addition of Ca2+ and calmodulin stimulated the phosphorylation reaction to a greater extent than with Ca2+ alone. This activity was strongly inhibited by 0.2 mM LaCl3 and to a lesser extent by 50 microM chlorpromazine or trifluoperazine. These results suggest that the 3000-dalton peptide may be phosphorylated by a Ca2+, calmodulin-dependent kinase associated with the lysosomal membrane.  相似文献   

7.
The membrane-bound protein kinase activity in plasma membranes (PM) and sarcoplasmic reticulum (SR) of rabbit myometrium was revealed, which catalyzes the synthesis of protein phosphoester products. cAMP had no effect on the phosphorylation of membrane substrates by soluble protein kinases I and II as well as by the membrane-bound enzyme of SR. At the same time, cAMP (10(-8) stimulated by 200% the phosphorylation of sarcolemmal components at functional rest (FR). In preparations obtained from pregnant animals, cAMP (10(-8) and 10(-5) M) stimulated the phosphorylation of PM 7- and 3-fold, respectively. cGMP had no effect on the phosphorylation of PM and SR proteins at FR. At 10(-5) and 10(-8) M, cGMP stimulated endogenous phosphorylation of PM and SR 7- and 4-fold, respectively. In pregnancy, the degree of endogenous phosphorylation of PM and SR increased by 70% and 260% as compared to that at FR; the activity of soluble protein kinases decreased two times under these conditions. At FR, the sarcolemmal proteins with Mr 35 000, 57 000, 89 000 and 174 000 underwent phosphorylation. The phosphorylation of the proteins with Mr 35 000 and 57 000 was cAMP-dependent. In pregnant animals sarcolemma, the phosphorylation affected the proteins with Mr 47 000, 57 000 and 174 000 and was cAMP-dependent for the former two proteins and cGMP-dependent for the latter protein. At FR, two SR proteins with Mr 47 000 and 168 000, while in pregnant animals the proteins with Mr 47 000, 132 000 and 168 000 were phosphorylatable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.  相似文献   

9.
NO-induced activation of cGMP-dependent protein kinase (PKG) increases the open probability of large conductance Ca2+-activated K+ channels and results in smooth muscle relaxation. However, the molecular mechanism of channel regulation by the NO-PKG pathway has not been determined on cloned channels. The present study was designed to clarify PKG-mediated modulation of channels at the molecular level. The cDNA encoding the alpha-subunit of the large conductance Ca2+-activated K+ channel, cslo-alpha, was expressed in HEK293 cells. Whole cell and single channel characteristics of cslo-alpha exhibited functional features of native large conductance Ca2+-activated K+ channels in smooth muscle cells. The NO-donor sodium nitroprusside increased outward current 2.3-fold in whole cell recordings. In cell-attached patches, sodium nitroprusside increased the channel open probability (NPo) of cslo-alpha channels 3.3-fold without affecting unitary conductance. The stimulatory effect of sodium nitroprusside was inhibited by the PKG-inhibitor KT5823. Direct application of PKG-Ialpha to the cytosolic surface of inside-out patches increased NPo 3.2-fold only in the presence of ATP and cGMP without affecting unitary conductance. A point mutation of cslo-alpha in which Ser-1072 (the only optimal consensus sequence for PKG phosphorylation) was replaced by Ala abolished the PKG effect on NPo in inside-out patches and the effect of SNP in cell attached patches. These results indicate that PKG activates cslo-alpha by direct phosphorylation at serine 1072.  相似文献   

10.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase.  相似文献   

11.
12.
13.
The plasma membrane Ca2+ pump ATPase from porcine aorta was isolated by the calmodulin affinity chromatographic method of Kosk-Kosicka et al. (Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) J. Biol. Chem. 261, 3333-3338). Its activity was restored by adding either phosphatidylcholine or phosphatidylserine. Cyclic GMP-dependent protein kinase (G-kinase) stimulated the enzyme in a concentration-dependent manner. However, phosphatidylinositol kinase (PI-kinase) activity was not detected in the enzyme preparation, and the presence of phosphatidylinositol was not necessary for stimulation by G-kinase. Furthermore, adenosine, a potent PI-kinase inhibitor, did not affect the stimulation. The enzyme preparation contained three major proteins, with molecular masses of 240, 145, and 135 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 240- and 135-kDa proteins were phosphorylated in association with the stimulation by G-kinase, but only the phosphorylation of the 240-kDa protein was dependent on the G-kinase concentration. A purified enzyme without the 240-kDa protein, prepared by our previous method (Imai, S., Yoshida, Y., and Sun, H.-T. (1990) J. Biochem. (Tokyo) 107, 755-761), was not activated by G-kinase. Immunoblotting with an antibody against the human erythrocyte Ca2+ pump revealed that the 135-kDa protein corresponded to one of the isoforms of the plasma membrane Ca2+ pump. These results suggest that the phosphorylation of the 240-kDa protein is responsible for stimulation of the plasma membrane Ca2+ pump ATPase by G-kinase.  相似文献   

14.
Cyclic GMP-dependent protein kinase (PKG) phosphorylated, in vitro, the large (MYPT1) and small (M20) regulatory subunits of myosin phosphatase (MP) with maximum stoichiometries of 1.8 and 0.6 mol of phosphate/mol subunit, respectively. The phosphorylation of these subunits by PKG did not affect the phosphatase activity towards the 20 kDa myosin light chain. However, phosphorylation of the MP holoenzyme decreased the binding of MP to phospholipid. The phosphorylation of the serine residue of the C-terminal part of MYPT1 was crucial for these interactions. These results suggest that the phosphorylation of MP by PKG is not a direct mechanism in activating MP activity, and that other indirect mechanisms, including the interaction between MP and phospholipids, might be candidates for Ca2+ desensitization via cGMP in smooth muscle.  相似文献   

15.
Various histone fractions from several sources differ markedly in their degree of dependence on protein kinase stimulatory modulator for maximum phosphorylation by rat liver cyclic GMP-dependent protein kinase in the presence of cyclic GMP. DEAE-cellulose and QAE-Sephadex chromatography of arginine-rich and mixed histones resulted in the histones displaying increased dependence on the modulator. This increased dependence was apparently due to the removal of contaminating modulator as heat-stable modulator activity could be eluted from the DEAE-cellulose column. Lysine-rich histone was not markedly dependent on the modulator before or after QAE-Sephadex chromatography.  相似文献   

16.
ACTH1–24 inhibits the endogenous phosphorylation in vitro of distinct SPM protein bands. Using N-terminal fragments of ACTH, the structure-activity requirements for this effect were studied. A rather complex interaction of the ACTH fragments with endogenous SPM phosphorylation was observed. The effects were not only dependent on the primary structure of the peptide used, but also on the protein band studied and the ATP/SPM ratio used in the incubation system. ACTH1–24 did not interfere with the ATP-hydrolyzing activity of the SPM preparation, nor did it influence the endogenous phosphatase activity. Therefore, a direct interaction of ACTH with SPM protein kinase(s) is likely to be responsible for its effect on phosphorylation.  相似文献   

17.
Cyclic nucleotide dependent protein kinase has been extracted wiht Tris or Lubrol PX from purified rod outer segments (ROS) of bovine retina. The activity of the enzyme is unaffected by light but is stimulated by either cyclic guanosine 3',5'-monophosphate (cGMP) or cyclic adenosine 3',5'-monophosphate (cAMP). Most of the solubilized enzyme elutes from DEAE-cellulose with about 0.18 M NaCl (type II protein kinase). An endogenous 30,000 molecular weight protein of the soluble fraction of ROS as well as exogenous histone are phosphorylated by the protein kinase in a cyclic nucleotide dependent manner. The Tris-extracted enzyme can be reassociated in the presence of Mg2+ with ROS membranes that are depleted of protein kinase activity. The reassociated protein kinase is insensitive to exogenous cyclic nucleotides, and it catalyzes the phosphorylation of the membrane protein, bleached rhodopsin. While the soluble and membrane-associated protein kinases may be interchangeable, they appear to be modulated by different biological signals; soluble protein kinase activity is increased by cyclic nucleotides whereas membrane-bound activity is enhanced when rhodopsin is bleached by light.  相似文献   

18.
Activation of one or more cyclic AMP-dependent protein kinases has been suggested as an intermediate step in ACTH-stimulated adrenal cell steroidogenesis. Phosphorylation of a number of proteins from different subcellular fractions has been reported but those phosphorylation events which are relevant to the steroidogenic process have not yet been identified. In this paper we report that plasma membrane enriched fractions from bovine adrenal cortex retain the ability to phosphorylate endogenous membrane proteins and that phosphorylation of these acceptors is markedly enhanced by cyclic AMP or, to a lesser extent, by cyclic GMP. Cyclic nucleotide-dependent phosphorylation was most marked in protein acceptors of 191 000, 148 000, 138 000, 107 000, 65 000, 60 000 and 27 000 daltons. Cyclic nucleotide stimulation of phosphorylation was rapid (within 10 s), and is consistent with the rapid onset of ACTH-stimulated steroidogenesis.  相似文献   

19.
Glucocorticoid receptor was purified from rat liver cytosol using a dexamethasone affinity column. The receptor thus purified displayed a single protein band when subjected to SDS-polyacrylamide gel electrophoresis. It had a molecular weight of 90,000 which was consistent with the reported value for other glucocorticoid receptor preparations. Incubation of the purified preparation with [gamma 32P] ATP and Mg2+ resulted in transfer of [32P] to the receptor protein indicating the presence of an endogeneous protein kinase activity capable of phosphorylating the receptor molecule. Phosphorylation of the glucocorticoid receptor by the endogenous protein kinase might serve as a direct mechanism for the activation of the receptor.  相似文献   

20.
A number of polyanionic compounds, including DNA, RNA and polyglutamate, were shown to exhibit protein kinase stimulatory modulator activity as they were required for cyclic GMP to stimulate the phosphorylation of various cationic substrates by rat liver cyclic GMP-dependent protein kinase. Anionic proteins (casein, phosvitin) were phosphorylated poorly by the enzyme and their phosphorylation was not stimulated by the stimulatory modulators. Studies of the mechanism of action suggest that the modulators interact directly with the substrates to form a complex which is a better substrate than free histone. The observed effect of modulator is complex as it depends on the ratio of modulator to histone and the resultant state of the complex formed (better or poorer substrate than free histone). The observed effect is also dependent on the properties of the histone substrate as Michaelis-Menten kinetics are not observed in the phosphorylation of arginine-rich histone in the absence or presence of cyclic GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号