首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A precise analysis of the mechanical response of collagen fibrils in tendon tissue is critical to understanding the ultrastructural mechanisms that underlie collagen fibril interactions (load transfer), and ultimately tendon structure–function. This study reports a novel experimental approach combining macroscopic mechanical loading of tendon with a morphometric ultrascale assessment of longitudinal and cross-sectional collagen fibril deformations. An atomic force microscope was used to characterize diameters and periodic banding (D-period) of individual type-I collagen fibrils within murine Achilles tendons that were loaded to 0%, 5%, or 10% macroscopic nominal strain, respectively. D-period banding of the collagen fibrils increased with increasing tendon strain (2.1% increase at 10% applied tendon strain, p < 0.05), while fibril diameter decreased (8% reduction, p < 0.05). No statistically significant differences between 0% and 5% applied strain were observed, indicating that the onset of fibril (D-period) straining lagged macroscopically applied tendon strains by at least 5%. This confirms previous reports of delayed onset of collagen fibril stretching and the role of collagen fibril kinematics in supporting physiological tendon loads. Fibril strains within the tissue were relatively tightly distributed in unloaded and highly strained tendons, but were more broadly distributed at 5% applied strain, indicating progressive recruitment of collagen fibrils. Using these techniques we also confirmed that collagen fibrils thin appreciably at higher levels of macroscopic tendon strain. Finally, in contrast to prevalent tendon structure–function concepts data revealed that loading of the collagen network is fairly homogenous, with no apparent predisposition for loading of collagen fibrils according to their diameter.  相似文献   

2.
Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1−/− versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1−/− tendon. In Col6a1−/− tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1−/− tendons compared to controls. An analysis of fibril density (number/μm2) demonstrated a ~ 2.5 fold increase in the Col6a1−/− versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1−/− tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1−/− tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.  相似文献   

3.
Tendon collagen fibrils are the basic force‐transmitting units of the tendon. Yet, surprisingly little is known about the diversity in tendon anatomy and ultrastructure, and the possible relationships between this diversity and locomotor modes utilized. Our main objectives were to investigate: (a) the ultra‐structural anatomy of the tendons in the digits of frogs; (b) the diversity of collagen fibril diameters across frogs with different locomotor modes; (c) the relationship between morphology, as expressed by the morphology of collagen fibrils and tendons, and locomotor modes. To assess the relationship between morphology and the locomotor modes of the sampled taxa we performed a principal component analysis considering body length, fibrillar cross sectional area (CSA) and tendon CSA. A MANOVA showed that differences between species with different locomotor modes were significant with collagen fibril diameter being the discriminating factor. Overall, our data related the greatest collagen fibril diameter to the most demanding locomotor modes, conversely, the smallest collagen fibril CSA and the highest tendon CSA were observed in animals showing a hopping locomotion requiring likely little absorption of landing forces given the short jump distances.  相似文献   

4.
The effect of aging on soft tissue repair is poorly understood. We examined collagen fibril diameter in repairing patellar tendons from young adult and aging rabbits. We hypothesized that repairing tendons from older (geriatric) rabbits would have similar diameter fibrils compared with the younger (young adult) rabbits. Full-length, full-thickness, central-third (2.5 to 3 mm) patellar tendon injuries were made by cutting out the center of the tendon in twelve 1-y-old and thirteen 4- to 5.5 (average, 4.25)-y-old female New Zealand White rabbits. The contralateral tendon served as an unoperated control. The rabbits were euthanized at 6, 12, and 26 wk after surgery. The collagen fibril diameter was examined by electron microscopy at the patellar end, middle, and tibial end of the patellar tendon. There was no significant decline in collagen fibril diameter at any location in the aging rabbit healing patellar tendons compared with those of the 1-y-old rabbits. This study found that collagen fibril diameter was not altered with increasing age in the healing rabbit patellar tendon.  相似文献   

5.
An electron microscope study of collagen fibrils from fixed tail tendons of rats has revealed that from some time shortly after birth until maturity, the fibril diameters have a bimodal distribution. The “two” types of fibril are indistinguishable in both transverse and longitudinal section. Unfixed specimens of eight-week-old-tail tendon showed a similar bimodal distribution of diameters though the positions of the peak values compared to fixed specimens of an eight-week-old-tail tendon were shifted upwards by about 30%. It has also been shown quantitatively that the polar collagen fibrils are directed randomly “up” and “down” with respect to their neighbors. Whilst it has been suggested by others that anastomosis is a feature of collagen structure, the results presented here do not support this hypothesis. Fibrillar units ~ 140 Å in diameter have been observed and the possibilities that these are elastic fibers or the breakdown products of collagen fibrils have been considered.  相似文献   

6.
The present study examined the hypothesis that collagen fibril diameter and crimp angle in ruptured human Achilles tendons differed from that of intact ones. Tissue samples were obtained from the central core (distal core) and the posterior periphery (distal superficial) at the rupture site, and the proximally intact (proximal superficial) part of the tendon in 10 subjects (38+/-8 years) with a complete tendon rupture. For comparisons corresponding tissue samples were procured from age (38+/-7 years) and gender matched intact Achilles tendons during routine forensic autopsy. The cross-sectional area density and diameter distribution of fibrils were analyzed using stereological techniques of digitized electron microscopy biopsy cross-sections, while crimp angle was measured by the changing banding pattern of collagen fibers when rotated between crossed polars. Nine of 10 persons with tendon ruptures reported that the injury did not occur during exceedingly large forces, and none experienced any symptoms in the days or months prior to the injury. Fibril diameter distribution showed no region-specific differences in either the ruptured or intact tendons for either group. However, in the distal core there were fewer fibrils in the ruptured compared to the intact tendons in 60-150 nm range, P<0.01. Similarly, in the distal superficial portion there were fewer fibrils in the ruptured compared to the intact tendons in the 90-120 nm range, 2P<0.05, while there were no differences in the proximal superficial tendons. Crimp angle did not display any region-specific differences, or any difference between the rupture and intact tendons. In conclusion, these data suggest that although crimp morphology is unchanged there appears to be a site-specific loss of larger fibrils in the core and periphery of the Achilles tendon rupture site. Moreover, the lack of symptoms prior to the rupture suggests that clinical tendinopathy is not an etiological factor in complete tendon ruptures.  相似文献   

7.
Variation of collagen fibril structure in tendon was investigated by x-ray diffraction. Anatomically distinct tendons from single species, as well as tendons from different species, were examined to determine the variations that exist in both the axial and lateral structure of the collagen fibrils. The meridional diffraction is derived from the axial collagen fibril structure. Anatomically distinct tendons of a particular species give meridional patterns that are indistinguishable within experimental error. The meridional diffraction patterns from tendons of different mammals are similar but show small species-specific variations, most noticeably in the 14th–18th orders. Tendons of birds also give meridional patterns that are similar to each other, but the avian patterns differ considerably from the mammalian ones. Avian tendons give stronger odd and weaker even low orders, a feature consistent with a reduced gap:overlap ratio, and have a distinctive intensity pattern for the higher meridional orders. Interpretation of these differences has been approached using biochemical data, diffraction by reconsituted fibers of purified collagen, and Fourier transform analysis. From these methods, it appears that the variations observed in the lower orders (2nd–8th) and in the higher orders (29th–52nd) are probably related to differences in the primary structure of the Type I collagen found in the different species. The variations observed in the 14th–18th orders appear not to be related to features within the triple-helical domain of the molecule. Equatorial diffraction yields information on the lateral packing of collagen molecules in the fibrils, and considerable variation was seen in different tendons. Rat tail tendon gives sharp Bragg reflections, demonstrating the presence of a crystalline lateral arrangement of molecules in the fibril. For the first time, sharp lattice reflections similar to those in rat tail tendon have been observed in nontail tendons, including rat achilles tendon, rabbit leg tendon, and wing and leg tendons of quail. In the rabbit and quail tendons, one of the strong equatorial reflections characteristic of the rat tendon pattern, at 1.26 nm, was absent. The positions of the equatorial maxima, which are a measure of intermolecular spacing, varied considerably, being smallest in the specimens displaying crystalline packing. The intermolecular distance in chiken and turkey leg tendons is longer than that found in mammalian tendons, or in avian wing tendons, which supports the hypothesis that a larger intermolecular spacing is characteristic of tendons that calcify. Thus, x-ray diffraction indicates there are reproducible differences in both the axial and lateral structure of collagen fibrils among different tendons. This work on tendon, a tissue containing almost exclusively Type I collagen as its major component, should serve as a basis for analyzing the structure of other connective tissues, which contain different genetic types of collagen and larger amounts of noncollagenous components.  相似文献   

8.
Connective tissue mechanical behavior is primarily determined by the composition and organization of collagen. In ligaments and tendons, type I collagen is the principal structural element of the extracellular matrix, which acts to transmit force between bones or bone and muscle, respectively. Therefore, characterization of collagen fibril morphology and organization in fetal and skeletally mature animals is essential to understanding how tissues develop and obtain their mechanical attributes. In this study, tendons and ligaments from fetal rat, bovine, and feline, and mature rat were examined with scanning electron microscopy. At early fetal developmental stages, collagen fibrils show fibril overlap and interweaving, apparent fibril ends, and numerous bifurcating/fusing fibrils. Late in fetal development, collagen fibril ends are still present and fibril bundles (fibers) are clearly visible. Examination of collagen fibrils from skeletally mature tissues, reveals highly organized regions but still include fibril interweaving, and regions that are more randomly organized. Fibril bifurcations/fusions are still present in mature tissues but are less numerous than in fetal tissue. To address the continuity of fibrils in mature tissues, fibrils were examined in individual micrographs and consecutive overlaid micrographs. Extensive microscopic analysis of mature tendons and ligaments detected no fibril ends. These data strongly suggest that fibrils in mature ligament and tendon are either continuous or functionally continuous. Based upon this information and published data, we conclude that force within these tissues is directly transferred through collagen fibrils and not through an interfibrillar coupling, such as a proteoglycan bridge.  相似文献   

9.
Tendons transmit forces generated from muscle to bone making joint movements possible. Tendon collagen has a complex supramolecular structure forming many hierarchical levels of association; its main functional unit is the collagen fibril forming fibers and fascicles. Since tendons are enclosed by loose connective sheaths in continuity with muscle sheaths, it is likely that tendon sheaths could play a role in absorbing/transmitting the forces created by muscle contraction. In this study rat Achilles tendons were passively stretched in vivo to be observed at polarized light microscope (PLM), scanning electron microscope (SEM) and transmission electron microscope (TEM). At PLM tendon collagen fibers in relaxed rat Achilles tendons ran straight and parallel, showing a periodic crimp pattern. Similarly tendon sheaths showed apparent crimps. At higher magnification SEM and TEM revealed that in each tendon crimp large and heterogeneous collagen fibrils running straight and parallel suddenly changed their direction undergoing localized and variable modifications. These fibril modifications were named fibrillar crimps. Tendon sheaths displayed small and uniform fibrils running parallel with a wavy course without any ultrastructural aspects of crimp. Since in passively stretched Achilles tendons fibrillar crimps were still observed, it is likely that during the tendon stretching, and presumably during the tendon elongation in muscle contraction, the fibrillar crimp may be the real structural component of the tendon crimp acting as shock absorber. The peritendinous sheath can be stretched as tendon, but is not actively involved in the mechanism of shock absorber as the fibrillar crimp. The different functional behaviour of tendons and sheaths may be due to the different structural and molecular arrangement of their fibrils.  相似文献   

10.
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.  相似文献   

11.
Normal tendon comprises coaxially aligned bundles of crimped collagen fibres each of which possesses a fibrillar substructure. In acute traumatic injury this level of organization is disrupted and the mechanical function of the tendon impaired. During repair, a degree of recovery of the fibrillar structure takes place. In this tudy we have assessed the re-establishment of tendon organization after injury on the basis of the collagen fibril diameter distribution and the collagen crimp parameters. Crimp became undetectable following injury but one month later was present throughout the tissue. At this time the periodicity was greatly reduced by comparison with that of the normal tendon and normal values were not re-established within 14 months following injury. Collagen fibril diameters remained abnormally small over this same period of time. In particular, fibrils of diameters in excess of 100 nm, commonly found in normal and contralateral tendons, were totally absent from the observed distributions in the healing tendons. Such large diameter fibrils often account for as much as 50% of the total mass of collagen present in the uninjured tissue. Thus the mechanical properties of the healing tendon may remain significantly different from those of normal tendon for a minimum time of 14 months after injury.  相似文献   

12.
D A Parry  A S Craig 《Biopolymers》1978,17(4):843-845
Earlier studies by the authors showed that the collagen fibrils in rat-tail tendon have a bi-modal distribution of fibril diameters from a time shortly after birth through to the onset of maturity at about 3–4 months. Present work has extended those observations for rats up to the age of 2 years. Histograms of the fibril diameter distributions for mature tail tendon and direct electron microscope observations show that the fibrils break down as the tendon ages. Further work on the constant diameter subfibrils of diameter 140 Å described previously, has confirmed that these are part of the elastic fibers present in tendon at all ages. It has been shown that there is relatively little variation in the collagen fibril diameter distribution as a function of the position of the specimen in the tail, and as the measured percentage of the area taken by the collagen fibrils present at any particular point. Estimation of the fibrillar collagen content of rat-tail tendon as a function of age indicates that it increases steadily from birth and reaches a maximum at the onset of maturity, beyond which the fibrillar collagen content appears to remain constant.  相似文献   

13.
The purpose of this study was to determine if an association exists between the tensile properties and the collagen fibril diameter distribution in in vitro stress-deprived rat tail tendons. Rat tail tendons were paired into two groups of 21 day stress-deprived and 0 time controls and compared using transmission electron microscopy (n = 6) to measure collagen fibril diameter distribution and density, and mechanical testing (n =6) to determine ultimate stress and tensile modulus. There was a statistically significant decrease in both ultimate tensile strength (control: 17.95+/-3.99 MPa, stress-deprived: 6.79+/-3.91 MPa) and tensile modulus (control: 312.8+/-89.5 MPa, stress-deprived: 176.0+/-52.7 MPa) in the in vitro stress-deprived tendons compared to controls. However, there was no significant difference between control and stress-deprived tendons in the number of fibrils per tendon counted, mean fibril diameter, mean fibril density, or fibril size distribution. The results of this study demonstrate that the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons is not correlated with the collagen fibril diameter distribution and, therefore, the collagen fibril diameter distribution does not, by itself, dictate the decrease in mechanical properties observed in in vitro stress-deprived rat tail tendons.  相似文献   

14.
The structure and organisation of the extracellular matrix, and in particular the axial alignment of type I collagen fibrils, are essential for the tensile strength of tendons. The resident tenocytes synthesize and maintain the composition of the extracellular matrix, which changes with age and maturation. Other components of the extracellular matrix include less abundant collagen types II, III, V, VI, XII, proteoglycans and glycoproteins. Cartilage oligomeric matrix protein (COMP) is an abundant non-collagenous pentameric glycoprotein in the tendon, which can bind to collagen types I and II. The function of COMP in the tendon is not clear, but it may act as a catalyst in fibrillogenesis. Its concentration changes with age, maturation and load. The present study delineates the ultrastructural distribution of COMP and its correlation to collagen fibril thickness in different compartments in two flexor tendons from horses of different ages (foetus, 8 months, 3 years, 12 years). The immunolabeling for COMP was higher in the superficial digital flexor tendon compared with the deep digital flexor tendon and it increased with the age of the animal, with the highest concentration in the 3-year-olds. Fibril diameter differed between age groups and a more homogenous fibril population was found in the fetal tendons. A positive correlation between high COMP immunolabeling and the percentage of small fibrils (<60 nm) were present in the SDFT. COMP immunolabeling was enriched at the gap region of the collagen fibril. In situ hybridization revealed the strongest expression in tendons from the 3-year-old horses whereas there was no expression in foetal tendon.  相似文献   

15.
Tendon function involves the development of an organized hierarchy of collagen fibrils. Small leucine-rich proteoglycans have been implicated in the regulation of fibrillogenesis and decorin is the prototypic member of this family. Decorin-deficient mice demonstrate altered fibril structure and mechanical function in mature skin and tail tendons. However, the developmental role(s) of decorin needs to be elucidated. To define these role(s) during tendon development, tendons (flexor digitorum longus) were analyzed ultrastructurally from postnatal day 10 to 90. Decorin-deficient tendons developed abnormal, irregularly contoured fibrils. Finite mixture modeling estimated that the mature tendon was a three-subpopulation mixture of fibrils with characteristic diameter ranges. During development, in each subpopulation the mean diameter was consistently larger in mutant mice. Also, diameter distributions and the percentage of fibrils in each subpopulation were altered. Biomechanical analyses demonstrated that mature decorin-deficient tendons had significantly reduced strength and stiffness; however, there was no reduction in immature tendons. Expression of decorin and biglycan, a closely related family member, was analyzed during development. Decorin increased with development while biglycan decreased. Spatially, both had a comparable localization throughout the tendon. Biglycan expression increased substantially in decorin-deficient tendons suggesting a potential functional compensation. The accumulation of structural defects during fibril growth, a period associated with decorin expression and low biglycan expression, may be the cause of compromised mechanical function in the absence of decorin. Our findings indicate that decorin is a key regulatory molecule and that the temporal switch from biglycan to decorin is an important event in the coordinate regulation of fibrillogenesis and tendon development.  相似文献   

16.
Collagen fibrils are the principal tensile element of vertebrate tissues where they occur in the extracellular matrix as spatially organised arrays. A major challenge is to understand how the mechanisms of nucleation, growth and remodelling yield fibrils of tissue-specific diameter and length. Here we have developed a seeding system whereby collagen fibrils were isolated from avian embryonic tendon and added to purified collagen solution, in order to characterise fibril surface nucleation and growth mechanisms. Fragmentation of tendon in liquid nitrogen followed by Dounce homogenisation generated fibril length fragments. Most (> 94%) of the fractured ends of fibrils, which show an abrupt square profile, were found to act as nucleation sites for further growth by molecular accretion. The mechanism of this nucleation and growth process was investigated by transmission electron microscopy, atomic force microscopy and scanning transmission electron microscopy mass mapping. Typically, a single growth spur occurred on the N-terminal end of seed fibrils whilst twin spurs frequently formed on the C-terminal end before merging into a single tip projection. The surface nucleation and growth process generated a smoothly tapered tip that achieved maximum diameter when the axial extension reached ∼ 13 μm. Lateral growth also occurred along the entire length of all seed fibrils that contained tip projections. The data support a model of collagen fibril growth in which the broken ends of fibrils are nucleation sites for propagation in opposite axial directions. The observed fibril growth behaviour has direct relevance to tendon matrix remodelling and repair processes that might involve rupture of collagen fibrils.  相似文献   

17.
Lumican and fibromodulin regulate the assembly of collagens into higher order fibrils in connective tissues. Here, we show that mice deficient in both of these proteoglycans manifest several clinical features of Ehlers-Danlos syndrome. The Lum(-/-)Fmod(-/-) mice are smaller than their wild type littermates and display gait abnormality, joint laxity, and age-dependent osteoarthritis. Misaligned knee patella, severe knee dysmorphogenesis, and extreme tendon weakness are the likely causes for joint laxity in the double-nulls. Fibromodulin deficiency alone leads to significant reduction in tendon stiffness in the Lum(+/+)Fmod(-/-) mice, with further loss in stiffness in a Lum gene dose-dependent way. At the protein level, we show marked increase of lumican in Fmod(-/-) tendons, which may partially rescue the tendon phenotype in this genotype. These results establish fibromodulin as a key regulator and lumican as a modulator of tendon strength. A disproportionate increase in small diameter immature collagen fibrils and a lack of progression to mature, large diameter fibrils in the Fmod(-/-) background may constitute the underlying cause of tendon weakness and suggest that fibromodulin aids fibril maturation. This study demonstrates that the collagen fibril-modifying proteoglycans, lumican and fibromodulin, are candidate genes and key players in the pathogenesis of certain types of Ehlers-Danlos syndrome and other connective tissue disorders.  相似文献   

18.
《Journal of biomechanics》2014,47(16):3794-3798
Tendons are able to transmit high loads efficiently due to their finely optimized hierarchical collagen structure. Two mechanisms by which tendons respond to load are collagen fibril sliding and deformation (stretch). Although many studies have demonstrated that regional variations in tendon structure, composition, and organization contribute to the full tendon׳s mechanical response, the location-dependent response to loading at the fibril level has not been investigated. In addition, the instantaneous response of fibrils to loading, which is clinically relevant for repetitive stretch or fatigue injuries, has also not been studied. Therefore, the purpose of this study was to quantify the instantaneous response of collagen fibrils throughout a mechanical loading protocol, both in the insertion site and in the midsubstance of the mouse supraspinatus tendon. Utilizing a novel atomic force microscopy-based imaging technique, tendons at various strain levels were directly visualized and analyzed for changes in fibril d-period with increasing tendon strain. At the insertion site, d-period significantly increased from 0% to 1% tendon strain, increased again from 3% to 5% strain, and decreased after 5% strain. At the midsubstance, d-period increased from 0% to 1% strain and then decreased after 7% strain. In addition, fibril d-period heterogeneity (fibril sliding) was present, primarily at 3% strain with a large majority occurring in the tendon midsubstance. This study builds upon previous work by adding information on the instantaneous and regional-dependent fibrillar response to mechanical loading and presents data proposing that collagen fibril sliding and stretch are directly related to tissue organization and function.  相似文献   

19.
Three-dimensional ultrastructure of human tendons.   总被引:1,自引:0,他引:1  
The three-dimensional ultrastructure of human tendons has been studied. Epitenon and peritenon consist of a dense network of longitudinal, oblique and transversal collagen fibrils crossing the tendon fibres. The internal structure of tendon fibres is also complex. The collagen fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibrils do not run only parallel but also cross each other forming spirals (plaits). These fibril bundles are bound together by a three-dimensional collagen fibril network of endotenon. In the myotendinous junction the surface of the muscle cells form processes. A network of tendineal collagen fibrils fills the recesses between the muscle cell processes penetrating the basement membrane of these processes. This complex ultrastructure of human tendons most likely offers a good buffer system against longitudinal, transversal, horizontal as well as rotational forces during movement and activity.  相似文献   

20.
The interactions of small leucine-rich proteoglycans (SLRPs) with collagen fibrils, their association with water, and their role in fibrillogenesis suggests that SLRPs may play an important role in tendon mechanics. Some studies have assessed the role of SLRPs in the mechanical response of the tendon, but the relationships between sophisticated mechanics, assembly of collagen, and SLRPs have not been well characterized. Decorin content was varied in a dose dependent manner using decorin null, decorin heterozygote, and wild type mice. Quantitative measures of mechanical (tension and compression), compositional, and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was increased in the decorin heterozygous tendons compared to wild type. These tendons also had a significant decrease in total collagen and no structural changes compared to wild type. Decorin null tendons did not have any mechanical changes; however, a significant decrease in the average fibril diameter was found. No differences were seen between genotypes in elastic or compressive properties, and all tendons demonstrated viscoelastic mechanical dependence on strain rate and frequency. These results suggest that decorin, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis. In addition, reductions in decorin do not cause large changes in indentation compressive properties, suggesting that other factors contribute to these properties. Understanding these relationships may ultimately help guide development of tissue engineered constructs or treatment modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号