首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Palm fruits show great structural complexity, and in-depth studies of their development are still scarce. This work aimed to define the developmental stages of the fruit of the neotropical palm Butia capitata and to characterize the ontogenesis of its pericarp. Biometric, anatomical, and histochemical evaluations were performed on pistillate flowers and developing fruits. The whole fruit develops in three phases: (I) histogenesis (up to 42 days after anthesis – DAA), when the topographic regions of the pericarp are defined; (II) pyrene maturation (42 to 70 DAA), when the sclerified zone of the pericarp is established; and (III) mesocarp maturation (70 to 84 DAA), when reserve deposition is completed. During pericarp ontogenesis (i) the outer epidermis and the outer mesophyll of the ovary give origin to the exocarp (secretory epidermis, collenchyma, parenchyma, sclerenchyma, and vascular bundles); (ii) the median ovarian mesophyll develops into the mesocarp, with two distinct topographical regions; (iii) the inner ovarian epidermis originates the endocarp; and in the micropylar region, it differentiates into the germination pore plate, a structure that protects the embryo and controls germination. (iv) Most of the inner region of the mesocarp fuses with the endocarp and, both lignified, give rise to the stony pyrene; (v) in the other regions of the mesocarp, carbohydrates and lipids are accumulated in a parenchyma permeated with fiber and vascular bundles. The development of the B. capitata pericarp presents high complexity and a pattern not yet reported for Arecaceae, which supports the adoption of the Butia-type pyrenarium fruit class.

  相似文献   

4.
Morphology and physiology of fruit and seed development were compared in Rhus aromatica and R. glabra (Anacardiaceae), both of which produce drupes with water-impermeable endocarps. Phenology of flowering/fruiting of the two species at the study site was separated by ∼2 mo. However, they were similar in the timetable and pattern of fruit and seed development; it took ∼2 mo and ∼1.5 mo for flowers of Rhus aromatica and R. glabra, respectively, to develop into mature drupes. The single sigmoidal growth curve for increase in fruit size and in dry mass of these two species differs from the double-sigmoidal one described for typical commercial drupes such as peach and plum. Order of attainment of maximum size was fruit and endocarp (same time), seed coat, and embryo. By the time fruits turned red, the embryo had reached full size and become germinable; moisture content of seed plus endocarp had decreased to ∼40%. The endocarp was the last fruit component to reach physiological maturity, which coincided with development of its impermeability and a seed plus endocarp moisture content of <10%. At this time, ∼50, 37, and 13% of the dry mass of the drupe was allocated to the exocarp plus mesocarp unit, endocarp, and seed, respectively. The time course of fruit and seed development in these two species is much faster than that reported for other Anacardiaceae, including Rhus lancea, Protorhus, and Pistacia.  相似文献   

5.
Cross- and partially cross-pollinated capitula of Cichorium intybus (Compositae, Lactuceae) were examined for a study of normal and seedless fruit development respectively. Embryos develop according to the Asterad pattern, and the free-nuclear endosperm becomes cellular 15–17 hrs after pollination. A zone of disorganized cellular material surrounds the embryo sac at anthesis, and, in normal achenes, this zone expands as the seed develops. Initially the developing seed elongates and comes into contact with the top of the ovary by 48 hrs. In contrast to this pattern, the ovule in developing seedless achenes degenerates within 72 hrs. Irregularities, such as an abnormally proliferating endothelium, embryo formation without endosperm, and endosperm formation without an embryo often accompany this degeneration. Differentiation of the pericarp in seeded achenes begins between 48 and 72 hrs, starting at the apex and proceeding basipetally; in seedless fruits the process is similar though initiated somewhat later. The normal pericarp at maturity exhibits a pigmented exocarp, a broad mesocarp of thick-walled lignified cells, and a tenuous endocarp. In seedless achenes the fruit coat is similar except that the exocarp is colorless and the cells of the mesocarp are relatively small.  相似文献   

6.
Scanning electron microscopic (SEM) observation demonstrates the differentiation of mesocarp and endocarp tissues and their lignified nature in dura fruits at 8 weeks after pollination (WAP). During shell formation, the endocarp cells become lignified to a hard shell while the mesocarp tissue remains cellular and fibrous. A transition zone made up of fibrous units was also visible beneath the shell. The soluble phenols of mesocarp and endocarp tissues at their developmental stage was analyzed using Reverse phase high performance liquid chromatography (RP-HPLC). The appearance of ferulic acid at 4 WAP and its absence at 8 WAP indicates the role of ferulic acid in lignin synthesis. The HPLC data was supported by the lignin concentration. To ascertain the biochemical relationship of lignin pathway enzymes, phenylalanine ammonia lyase (PAL), cinnamyl alcohol-NADPH-dehydrogenase (CAD) and peroxidase (POD) with shell synthesis, the activities of these enzymes and lignin content were assessed during development of the shell between 4 and 8 WAP. The three enzymes, PAL, CAD and POD expressed high level of activity in the mesocarp and endocarp at 4 WAP. At 8 WAP a sharp decline in activity was observed in the endocarp whereas the mesocarp showed a moderate reduction. This variation is an indication of the role of these enzymes in shell formation.  相似文献   

7.
KUO  J.; PATE  J. S. 《Annals of botany》1985,55(5):635-647
A mycelium-like network of internal phloem was observed in theinner mesocarp of the lateral pod walls of the fruit of certaingenotypes of cowpea [Vigna unguiculata (L.) Walp.] In the cultivarVita 3, the network consists of single, or rarely double, strandsof sieve elements and associated phloem parenchyma, orientedmainly parallel with the fibres of the adjacent endocarp, andstretching marginally beyond the sheets of fibres to connectabove and below with the outermost phloem of the longitudinalstrands of the dorsal and ventral sutures of the fruit. Theinternal phloem network does not relate conformationally to,or interconnect with the conventional (xylem+phloem) vasculatureof the mid mesocarp of the pod wall. In Vita 3, sieve elementsdifferentiate in the internal phloem after those in the majorveins of the pod, but before the presumptive endocarp fibrescommence wall thickening. The pod walls of twenty-one otherspecies of legumes proved negative for internal phloem, whileof nine varied genotypes of cowpea examined, six proved positive,three negative for the trait. Presence of internal phloem incowpea is not always associated with presence of endocarp fibresor necessarily with large fruits with large seeds. Possiblefunctions suggested for the phloem network are to provide assimilatesfor fibre wall thickening or to transport solutes to or fromsites of temporary storage in the fleshy inner layers of thepod wall. Internal phloem, legume fruit, translocation, mesocarp, pod wall, Vigna unguiculata, cowpea  相似文献   

8.
Lepidocaryum tenue, Mauritia flexuosa and Mauritiella armata belong to the subtribe Mauritiinae, one early divergent lineage of the Arecaceae and one of the few of Calamoideae that occur in South America. These species occur in swampy environments and have fruits that are characteristically covered with scales. The objective of this study was to describe the formation of the layers of the pericarp within this subtribe and attempt to correlate fruit structure with the environment where species typically occur. Toward this goal, flowers in pre-anthesis and anthesis and fruits throughout development were analyzed using standard methods for light microscopy. The ontogeny of the layers of the pericarp of all three species was found to be similar. The scales were formed from non-vascularized emergences composed of exocarp and mesocarp. The median mesocarp accumulates lipids only in M. flexuosa and M. armata. The inner mesocarp together with the endocarp becomes papyraceous and tenuous in all species. This internal region of pericarp showed collapsed cells due to seed growth at the end of fruit development. Fruits of Mauritiinae are baccate, and the characters of the pericarp, especially the inner mesocarp and endocarp, help to maintain moisture. On the other hand, many species close to Mauritiinae show pericarp with sclerenchyma adjacent to the seed. This variation can contribute to understand the importance of this striking character in dispersal, germination and colonization in Arecaceae.  相似文献   

9.
Many fruits on Golden King plum trees inoculated through the stalks with Xanthomonas campestris pv. pruni developed unusual lesions extending from the exocarp to the endocarp. A few uninoculated, diseased fruits had similar lesions. The pathogen was isolated from both inoculated and uninoculated stalks and from seeds inside fruits. Scanning electron microscopy of inoculated stalks and mature fruits with unusual lesions revealed that vascular channels of the stalk, seed coat, stony endo, carp, and mesocarp were filled with masses of X. campestris pv. pruni. Bacterial colonies also occurred in other tissues of these fruit parts but were apparently absent from the starchy endosperm or surface of the diseased exocarp. This is the first full report of systemic movement of X. campestris pv. pruni to seed and fruit through stalks.  相似文献   

10.
The indehiscent fruitlets of the apparently basalmost extant angiosperm, Amborella trichopoda, have a pericarp that is differentiated into five zones, a thin one‐cell‐layered skin (exocarp), a thick fleshy zone of 25–35 cell layers (outer mesocarp), a thick, large‐celled sclerenchymatous zone (unlignified) of 6–18 cell layers (middle mesocarp), a single cell layer with thin‐walled (silicified?) cells (inner mesocarp), and a 2–4‐cell‐layered, small‐celled sclerenchymatous zone (unlignified) derived from the inner epidermis (endocarp). The border between inner and outer mesocarp is not even but the inner mesocarp forms a network of ridges and pits; the ridges support the vascular bundles, which are situated in the outer mesocarp. In accordance with previous observations by Bailey & Swamy, no ethereal oil cells were observed in the pericarp; however, lysigenous cavities as mentioned by these authors are also lacking; they seem to be an artefact caused by re‐expanding dried fruits. The seed coat is not sclerified. The fruitlets of Amborella differ from externally similar fruits or fruitlets in other basal angiosperms, such as Austrobaileyales or Laurales, in their histology. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 148 , 265–274.  相似文献   

11.
J. Aarrouf    A. Garcin    Y. Lizzi    M. El  Maâtaoui 《Journal of Phytopathology》2008,156(6):338-345
Immunofluorescence and cytohistochemical studies have been performed to understand the host–parasite relationships in the pathosystem: peach–Xanthomonas arboricola pv. pruni (Xap). Using a commercial immunodetection kit, Xap cells were specifically identified in tissues from infected leaves and fruits. Sections from infected leaves showed that the pathogen penetrates the mesophyll via stomata and develops in the intercellular spaces where it degrades the cell wall components. This leads to cell collapse and consequently to the formation of necrotic lesions. The same events have been noted in sections from infected fruits. However, the contaminated zones of mesocarp parenchyma exhibited cell dedifferentiation and generated somatic embryo‐like structures. Sections from midrib samples collected at different distances from infected lamina revealed the presence of Xap cells in the sieve tubes and xylem suggesting a systemic trafficking of the pathogen. The results are discussed in terms of cytological effects and epidemiology of Xap.  相似文献   

12.
The Malesian genus Eugeissona, with six species, is sister to all other Calamoideae, which are in turn sister to all other Arecaceae. The structure of its gynoecium and fruit is thus potentially of great interest in understanding gynoecium evolution in calamoid palms and in Arecaceae as a whole. The wall of the incompletely trilocular gynoecium of Eugeissona is thick and differentiated into several topographic zones, with a well‐developed vascular system even before pollination. During gynoecium and fruit development, the outer and inner epidermises are little specialized and form the exocarp and endocarp (obliterated in the mature fruit), respectively. In contrast, the mesophyll of the carpels differentiates strongly and is markedly specialized: four massive topographic zones are easily distinguished within the mesocarp. The peripheral zone of the mesocarp forms the body of the scales (a synapomorphy for Calamoideae). The second and the fourth zones are multilayered and parenchymatous with a massive derived vascular system in the former. The third zone of the mesocarp comprises a stout sclerenchymatous pyrene, made of fibre‐like sclereids, the innermost bundles of the derived vascular system and dorsal, ventral and lateral vascular bundles. The fruits of all other Calamoideae lack the sclerenchymatous pyrene and thus differ dramatically from Eugeissona fruits. The similarity of the processes of histogenesis during gynoecium and fruit development in Eugeissona with those in Nypa and borassoid palms, suggests these features could be plesiomorphic for the family. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 377–394.  相似文献   

13.
Heterocoma is a Brazilian endemic genus resulting from the dismemberment of Sipolisiinae, in which only representatives with fruit containing phytomelanin were included in the genus. As the fruits of Asteraceae are known to be systematically important at various taxonomic levels and Heterocoma fruit has not been described previously, we studied the morphology and anatomy of the cypselas of all species of the genus, comparing them with other fruits in the family containing phytomelanin and evaluating the systematic potential at the specific and tribal levels. The fruits were analysed by scanning electron microscopy (SEM) and light microscopy. The morphological features of the fruit, including the carpopodium, ribs and pappi, varied in the genus and demonstrated potential for species discrimination. The anatomy showed a pattern for the genus with a uniseriate exocarp, the outer mesocarp composed of fibres arranged in several layers, the inner mesocarp composed of several layers of parenchyma, the endocarp, and phytomelanin deposited between the inner and outer mesocarp. This anatomical pattern of phytomelanin deposition differs from that of other Asteraceae with phytomelanin in their fruit. Heterocoma is also the only genus in Vernonieae that has phytomelanin deposition in the cypselas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 255–265.  相似文献   

14.
Endocarp developmental timing in drupe‐type fruits, involving tissue expansion and sclerification processes, is increasingly used as marker for biological studies and crop management. In spite of its wide application, however, little is known regarding how these morphogenetic processes unfold or the factors that modify it. This study evaluates endocarp expansion and sclerification of olive (Olea europaea) fruits, used as an example of drupe‐type fruits, from trees growing under different water regimes: full irrigated, deficit irrigated (moderate reduction of water availability) and rainfed (severe reduction of water availability). Fruits were sampled weekly until pit hardening, and fruit and endocarp areas were evaluated in histological preparations. An image analysis process was tested and adjusted to quantify sclerified area and distribution within the endocarp. Individual stone cells differentiated independently but distribution and timing indicated the overall coordination of endocarp tissue sclerification. Increase in sclerified area was initially gradual, accelerated abruptly the week prior to the end of endocarp expansion and then continued at an intermediate rate. These results suggest that the end of the expansion period is driven by sclerification and the morphogenetic signals involved act first on sclerification rather than endocarp size. Intensification of sclerification and the end of expansive growth occurred first with lowest water supply. Moderate and severe reductions in water availability proportionately decreased endocarp expansion and prolonged the sclerification, delaying the date of physically perceived hardening but not affecting the final degree of endocarp sclerification.  相似文献   

15.
Abstract. 1. Damage to juvenile plant tissues can cause reductions in fitness. Therefore, plants are expected to have evolved various defences for juvenile organs; however, so far, little attention has been paid to mechanical defence, as they have been considered to constrain the growth of juvenile organs. This study revealed that the dioecious tree Aucuba japonica uses mechanical defences to protect young developing fruit from the gall midge Asphondylia aucubae. 2. Young fruit of A. japonica have a hard layer of endocarp covering the integument. Midges oviposit on the surface of the integument, where larval chambers are later formed. The endocarp gradually becomes cracked as the embryo sac develops. 3. Oviposition by the midges is successful only when the ovipositors happen to pass through cracks in the endocarp. Thus, to successfully lay eggs, midges must insert the ovipositor repeatedly. This should decrease the fecundity of the midges, and subsequently their infectiousness, because their adult lifespan is short and they do not consume food during this time. 4. Expansion of the cracks in the endocarp simplifies oviposition over time; however, the embryo sac continues to grow, increasing its volume relative to that of the ovule. This appears to deplete available space and tissue used in the construction of larval chambers, gradually making the fruit less susceptible to midge attacks. 5. The temporary nature of this defence should prevent it from constricting the growth of young fruit. This exemplifies a novel strategy for a mechanical defence of young developing plant tissues.  相似文献   

16.
During postnatal ontogeny of vertebrates, allometric trends in certain morphological units or dimensions can shift drastically among isometry, positive allometry, and negative allometry. However, detailed patterns of allometric transitions in certain timings have not been explored well. Identifying the presence and nature of allometric shifts is essential for understanding the patterns of changes in relative size and shape and the proximal factors that are controlling these changes mechanistically. Allometric trends in 10 selected vertebrae (cervical 2–caudal 2) from hatchlings to very mature individuals of Alligator mississippiensis (Archosauria, Crocodylia) are reported in the present study. Allometric coefficients in 12 vertebral dimensions are calculated and compared relative to total body length, including centrum, neural spine, transverse process, zygapophysis, and neural pedicle. During the postnatal growth, positive allometry is the most common type of relative change (10 of the 12 dimensions), although the diameter of the neural canal shows a negative allometric trend. However, when using spurious breaks (i.e. allometric trends subdivided into growth stages using certain growth events, and key body sizes and/or ages), vertebral parts exhibit various pathways of allometric shifts. Based on allometric trends in three spurious breaks, separated by the end of endochondral ossification (body length: approximnately 0.9 m), sexual maturity (1.8 m), and the stoppage of body size increase (2.8 m), six types of ontogenetic allometric shifts are established. Allometric shifts exhibit a wide range from positive allometry restricted only in the early postnatal stage (Type I) to life‐long positive allometry (Type VI). This model of ontogenetic allometric shifts is then applied to interpret potential mechanisms (causes) of allometric changes, such as (1) growth itself (when allometric trend gradually decreases to isometric or negative allometric change: Type II–IV allometric shift); (2) developmental constraint (when positive allometry is limited only in the early growth stage: Type I allometric shift); and (3) functional or biomechanical drive (when positive allometry continues throughout ontogeny: Type VI allometric shift).  相似文献   

17.
18.
The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.  相似文献   

19.
Xyridaceae belongs to the xyrid clade of Poales, but the phylogenetic position of the xyrid families is only weakly supported. Xyridaceae is divided into two subfamilies and five genera, the relationships of which remain unclear. The development of the ovule, fruit and seed of Abolboda spp. was studied to identify characteristics of taxonomic and phylogenetic value. All of the studied species share anatropous, tenuinucellate and bitegmic ovules with a micropyle formed by the inner and outer integuments, megagametophyte development of the Polygonum type, seeds with a tanniferous hypostase, a helobial and starchy endosperm and an undifferentiated embryo, seed coat derived from both integuments with a tanniferous tegmen and a micropylar operculum, and fruits with a parenchymatous endocarp and mesocarp and a sclerenchymatous exocarp. Most of the ovule and seed characteristics described for Abolboda are also present in Xyris and may represent a pattern for the family. Abolboda is distinguished by the ovule type, endosperm formation and the number of layers in the seed coat, in agreement with its classification in Abolbodoideae. The following characteristics link Xyridaceae to Eriocaulaceae and Mayacaceae, supporting the xyrid clade: tenuinucellate, bitegmic ovules; seeds with a tanniferous hypostase, a starchy endosperm and an undifferentiated embryo; and a seed coat with a tanniferous tegmen. A micropylar operculum in the seeds of Abolboda is described for the first time here and may represent a synapomorphy for the xyrids. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 144–154.  相似文献   

20.
All Illicium spp. have explosive fruits, which is a unique character among the basal grade of angiosperms. Illicium fruits consist of several ventrally dehiscing follicles developing from conduplicate carpels, with a prominent, slightly postgenitally fused ventral slit. The closure of the ventral slit is also secured by two mirror‐symmetrical massive longitudinal sclerenchymatous bands in the mesocarp along the edges and by turgor pressure. The pericarp differentiates into a fleshy (or coriaceous) peripheral zone (exocarp and mesocarp) with numerous ethereal‐oil‐containing cells and a sclerenchymatous (single‐layered, palisade) inner zone (endocarp). Dehydration of the fleshy zone of the pericarp and partial compression of the epidermal sclereids with U‐shaped wall thickenings lining the ventral suture are instrumental in explosive fruitlet dehiscence. Generally, the fruit structure of Illicium differs dramatically from those in other early diverging angiosperms. Gynoecium and fruit structure (and a probable early Cretaceous divergence from the SchisandraKadsura clade) provide evidence for treatment of Illicium as separate from Schisandraceae s.s. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 640–654.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号