首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Structural optimization of pyrazolopyridine derivative 2, which is one of the newly discovered chemical leads for PDE4 inhibitors from our in-house library, was carried out successfully. The process of discovery of new orally active PDE4 inhibitors, which are expected to possess therapeutic potential, is presented and their structure-activity relationships are discussed.  相似文献   

2.
The synthesis, preliminary evaluation and structure–activity relationship (SAR) of a series of 1-aryl-4-methyl[1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors are described. From this investigation compound 31 was identified, showing good combined potency, acceptable brain uptake and high selectivity for both PDE2 and PDE10 enzymes. Compound 31 was subjected to a microdosing experiment in rats, showing preferential distribution in brain areas where both PDE2 and PDE10 are highly expressed. These promising results may drive the further development of highly potent combined PDE2/PDE10 inhibitors, or even of selective inhibitors of PDE2 and/or PDE10.  相似文献   

3.
PDE4 inhibitors are of high interest for treatment of a wide range of inflammatory or autoimmune diseases. Their potential however has not yet been realized due to target-associated side effects, resulting in a low therapeutic window. We herein report the design, synthesis and evaluation of novel PDE4 inhibitors containing a γ-lactone structure. Such molecules are designed to undergo metabolic inactivation when entering circulation, thereby limiting systemic exposure and reducing the risk for side effects. The resulting inhibitors were highly active on both PDE4B1 and PDE4D2 and underwent rapid degradation in human plasma by paraoxonase 1. In contrast, their metabolites displayed markedly reduced permeability and/or on-target activity.  相似文献   

4.
The hypothesis that the dose-limiting side effects of PDE4 inhibitors could be mediated via the central nervous system prompted us to design and synthesize a hydrophilic piperidine analog to improve the side effect profile of Ariflo 1, which is an orally active second-generation PDE4 inhibitor. During evaluation of various water-soluble piperidine analogs, 2a-b, 11b-14b, and 17a showed therapeutic potential in cross-species comparison studies. The following three findings were obtained: (1) The hydroxamic acid group, a well known metal chelator, caused a marked increase of inhibitory activity. (2) Water-soluble piperidine analogs lacked the configurational isomerism of Ariflo 1 without loss of inhibitory activity. (3) Replacement of the 4-methoxy residue with a difluoromethoxy residue led to an increase of in vivo potency. Structure-activity relationships are presented. Single-dose rat pharmacokinetic data for 11b, 12b, and 17a are also presented.  相似文献   

5.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

6.
Type 4 cAMP phosphodiesterase (PDE4) inhibitors show a broad spectrum of anti-inflammatory effects in almost all kinds of inflamed cells, by an increase in cAMP levels which is a pivotal second messenger responsible for various biological processes. These inhibitors are now considered as the potential drugs for treatment of chronic inflammatory diseases. However, some recently marketed inhibitors e.g., roflumilast, have shown adverse effects such as nausea and emesis, thus restricting its use. In order to identify novel PDE4 inhibitors with improved therapeutic indexes, a highly correlating (r = 0.963930) pharmacophore model (Hypo1) was established on the basis of known PDE4 inhibitors. Validated Hypo1 was used in database screening to identify chemical with required pharmacophoric features. These compounds are further screened by using the rule of five, ADMET and molecular docking. Finally, twelve hits which showed good results with respect to following properties such as estimated activity, calculated drug-like properties and scores were proposed as potential leads to inhibit the PDE4 activity. Therefore, this study will not only assist in the development of new potent hits for PDE4 inhibitors, but also give a better understanding of their interaction with PDE4. On a wider scope, this will be helpful for the rational design of novel potent enzyme inhibitors.  相似文献   

7.
The synthesis and in vitro activity of a series of substituted furans as a novel structural class of PDE4 inhibitors is described. Comparison of emetic threshold with known PDE4 inhibitors is presented.  相似文献   

8.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   

9.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that serve as drug targets in many human diseases. There is a continuing need to identify high-specificity inhibitors that affect individual PDE families or even subtypes within a single family. The authors describe a fission yeast-based high-throughput screen to detect inhibitors of heterologously expressed adenosine 3',5'-cyclic monophosphate (cAMP) PDEs. The utility of this system is demonstrated by the construction and characterization of strains that express mammalian PDE2A, PDE4A, PDE4B, and PDE8A and respond appropriately to known PDE2A and PDE4 inhibitors. High-throughput screens of 2 bioactive compound libraries for PDE inhibitors using strains expressing PDE2A, PDE4A, PDE4B, and the yeast PDE Cgs2 identified known PDE inhibitors and members of compound classes associated with PDE inhibition. The authors verified that the furanocoumarin imperatorin is a PDE4 inhibitor based on its ability to produce a PDE4-specific elevation of cAMP levels. This platform can be used to identify PDE activators, as well as genes encoding PDE regulators, which could serve as targets for future drug screens.  相似文献   

10.
The synthesis and the biological evaluation of new potent phosphodiesterase type 4 (PDE4) inhibitors are presented. This new series was elaborated by replacement of the metabolically resistant phenyl hexafluorocarbinol of L-791,943 (1) by a substituted aminopyridine residue. The structure-activity relationship of N-substitution on 3 led to the identification of (-)-3n which exhibited a good PDE4 inhibitor activity (HWB-TNFalpha=0.12 microM) and an improved pharmacokinetic profile over L-791,943 (rat t(1/2)=2 h). (-)-3n was well tolerated in ferret with an emetic threshold of 30 mg/kg (po) and was found to be active in the ovalbumin-induced bronchoconstriction model in guinea pig (54%, 0.1 mg/kg, ip) as well as the ascaris-induced bronchoconstriction model in sheep (64%/97%, early/late, 0.5 mg/kg, iv).  相似文献   

11.
The synthesis and the phosphodiesterase-4 (PDE4) inhibitory activity of 2-pyridinemethanol derivatives is described. The evaluation of the structure-activity relationship (SAR) in this series of novel PDE4 inhibitors led to the identification of compound 9 which exhibits excellent in vitro activity, desirable pharmacokinetic parameters and good efficacy in animal models of bronchoconstriction.  相似文献   

12.
In cells transfected to express wild-type PDE4A4 cAMP phosphodiesterase (PDE), the PDE4 selective inhibitor rolipram caused PDE4A4 to relocalise so as to form accretion foci. This process was followed in detail in living cells using a PDE4A4 chimera formed with Green Fluorescent Protein (GFP). The same pattern of behaviour was also seen in chimeras of PDE4A4 formed with various proteins and peptides, including LimK, RhoC, FRB and the V5-6His tag. Maximal PDE4A4 foci formation, occurred over a period of about 10 h, was dose-dependent on rolipram and was reversible upon washout of rolipram. Inhibition of protein synthesis, using cycloheximide, but not PKA activity with H89, inhibited foci generation. Foci formation was elicited by Ro20-1724 and RS25344 but not by either Ariflo or RP73401, showing that not all PDE4 selective inhibitors had this effect. Ariflo and RP73401 dose-dependently antagonised rolipram-induced foci formation and dispersed rolipram pre-formed foci as did the adenylyl cyclase activator, forskolin. Foci formation showed specificity for PDE4A4 and its rodent homologue, PDE4A5, as it was not triggered in living cells expressing the PDE4B2, PDE4C2, PDE4D3 and PDE4D5 isoforms as GFP chimeras. Altered foci formation was seen in the Deltab-LR2-PDE4A4 construct, which deleted a region within LRZ, showing that appropriate linkage between the N-terminal portion of PDE4A4 and the catalytic unit of PDE4A4 was needed for foci formation. Certain single point mutations within the PDE4A4 catalytic site (His505Asn, His506Asn and Val475Asp) were shown to ablate foci formation but still allow rolipram inhibition of PDE4A4 catalytic activity. We suggest that the binding of certain, but not all, PDE4 selective inhibitors to PDE4A4 induces a conformational change in this isoform by 'inside-out' signalling that causes it to redistribute in the cell. Displacing foci-forming inhibitors with either cAMP or inhibitors that do not form foci can antagonise this effect. Specificity of this effect for PDE4A4 and its homologue PDE4A5 suggests that interplay between the catalytic site and the unique N-terminal region of these isoforms is required. Thus, certain PDE4 selective inhibitors may exert effects on PDE4A4 that extend beyond simple catalytic inhibition. These require protein synthesis and may lead to redistribution of PDE4A4 and any associated proteins. Foci formation of PDE4A4 may be of use in probing for conformational changes in this isoform and for sub-categorising PDE4 selective inhibitors.  相似文献   

13.
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD.  相似文献   

14.
Using the technique of site-directed mutagenesis, point mutants of human PDE4A have been developed in order to identify amino acids involved in inhibitor binding. Relevant amino acids were selected according to a peptidic binding site model for PDE4 inhibitors, which suggests interaction with two tryptophan residues, one histidine and one tyrosine residue, as well as one Zn(2+) ion. Mutations were directed at those tryptophan, histidine, and tyrosine residues, which are conserved among the PDE4 subtypes (PDE4A-D) and lie within the high-affinity 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram) binding domain of human PDE4A (amino acids 276-681 according to the PDE4A sequence L20965). Truncations to this region do not alter enzyme activity or inhibitor sensitivity. The mutants were expressed in COS1 cells, and the recombinant cyclic nucleotide phosphodiesterase (PDE) forms have been characterized in terms of their catalytic activity and inhibitor sensitivities. Tyrosine residues 432 and 602, as well as histidine 588, were found to be involved in inhibitor binding, but no interaction was detected between tryptophan and PDE inhibitors tested. To test the possibility that other amino acids are of importance for hydrophobic interactions, selected phenylalanine residues were also mutated. We found phenylalanine 613 and 645 to influence inhibitor binding to PDE4. The significant differences in the inhibitor sensitivities of the mutants show that the various inhibitors have different enzyme binding sites. Based on the assumption that the known side effects of PDE4 inhibitors (like emesis and nausea) are caused directly by selective inhibition of different conformation states of PDE4, our results may be a hint to differ between PDE4 inhibitors, which have emetic side effects (like rolipram), and those that do not have side effects (like N-(3,5-dichlorpyrid-4-yl)-[1-(4-fluorbenzyl)-5-hydroxy-indol-3-yl]-glyoxylateamide [AWD12-281]) by the differences of their binding sites and in that context contribute to the development of novel drugs. Furthermore, the identification of amino acid interactions proposed by the peptidic binding site model, which was used for the mutant selection, verifies the PrGen modeling as a useful method for the prediction of inhibitor binding sites in cases where detailed knowledge of the protein structure is not available.  相似文献   

15.
Phosphodiesterase (PDE) inhibitors have been widely studied as therapeutics for treatment of human diseases. However, the mechanism by which each PDE family recognizes selectively a category of inhibitors remains a puzzle. Here we report the crystal structure of PDE7A1 catalytic domain in complex with non-selective inhibitor 3-isobutyl-1-methylxanthine and kinetic analysis on the mutants of PDE7A1 and PDE4D2. Our studies suggest at least three elements play critical roles in inhibitor selectivity: 1) the conformation and position of an invariant glutamine, 2) the natures of scaffolding residues, and 3) residues that alter shape and size of the binding pocket. Kinetic analysis shows that single PDE7 to PDE4 mutations increase the sensitivity of PDE7 to PDE4 inhibitors but are not sufficient to render the engineered enzymes comparable with the wild types. The triple S373Y/S377T/I412S mutation of PDE7A1 produces a PDE4-like enzyme, implying that multiple elements must work together to determine inhibitor selectivity.  相似文献   

16.
Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstructive pulmonary diseases trials, thus re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP 73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-beta1 release during LPS-induced lung injury in mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated with chronic lung diseases.  相似文献   

17.
The syntheses and in vitro evaluation of a new series of pyrido[2,3-d]pyrimidine-2,4-diones bearing substituents at C-3 and/or C-4 positions on the pyridine ring are described. Some of these compounds, especially 51 and 6f, were found to be potent phosphodiesterase 4 (PDE 4) inhibitors exhibiting improved ratio of PDE 4 inhibitory activity:rolipram binding assay (RBA).  相似文献   

18.
The increasing number of eosinophils into bronchoaelvolar space is observed during noninfectious inflammatory lung diseases. Eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26) are the strongest chemotactic agents for eosinophils. Inhibitors of phosphodiesterase 4 (PDE4), the enzyme decomposing cAMP, are anti-inflammatory agents which act through cAMP elevation and inhibit numerous steps of allergic inflammation. The effect of PDE4 inhibitors on eotaxin expression is not known in details. The aim of our study was to evaluate the influence of PDE4 inhibitors: rolipram and RO-20-1724 on expression of eotaxins in bronchial epithelial cell line BEAS-2B. Cells were preincubated with PDE4 inhibitors or dexamethasone for 1 hour and then stimulated with IL-4 or IL-13 alone or in combination with TNF-α. After 48 hours eotaxin protein level was measured by ELISA and mRNA level by real time PCR. Results: PDE4 inhibitors decreased CCL11 and CCL26 expression only in cultures co-stimulated with TNF-α. In cultures stimulated with IL-4 and TNF-α rolipram and RO-20-1724 diminished CCL11 mRNA expression by 34 and 37%, respectively, and CCL26 by 43 and 47%. In cultures stimulated with IL-13 and TNF-α rolipram and RO-20-1724 decreased expression of both eotaxins by about 50%. These results were confirmed at the protein level. The effect of PDE4 inhibitors on eotaxin expression in BEAS-2B cells, in our experimental conditions, depends on TNF-α contribution.  相似文献   

19.
PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP {4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid} as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.  相似文献   

20.
Novel 1,7- and 2,7-naphthyridine derivatives, designed by the introduction of nitrogen atom into the phenyl ring of previously reported 4-aryl-1-isoquinolinone derivatives, were disclosed as a new structural class of potent and specific PDE5 inhibitors. Among them, 2,7-naphthyridine 4c showed potent PDE5 inhibition (IC(50)=0.23 nM) and one of the best PDE5 specificities against PDEs1-4,6 (>100,000-fold selective versus PDE1-4, 240-fold selective vs PDE6). This compound showed more potent relaxant effects on isolated rabbit corpus cavernosum (EC(30)=5.0 nM) than Sildenafil (EC(30)=8.7 nM). The compound 4c (T-0156) was selected for further biological and pharmacological evaluation of erectile dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号