首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes involved in the synthesis of poly(glycerol phosphate) wall teichoic acid have been identified in the tag locus of the model Gram-positive organism Bacillus subtilis 168. The functions of most of these gene products are predictable from sequence similarity to characterized proteins and have provided limited insight into the intracellular synthesis and translocation of wall teichoic acid. Nevertheless, critical steps of poly(glycerol phosphate) teichoic acid polymerization continue to be a puzzle. TagB and TagF, encoded in the tag locus, do not show sequence similarity to characterized proteins. We recently showed that recombinant TagF could catalyze glycerol phosphate polymerization in vitro. Based largely on homology to TagF, the TagB protein has been proposed to catalyze either an intracellular glycerophosphotransfer reaction or the extracellular teichoic acid/peptidoglycan ligation reaction. Here we have taken steps to characterize TagB, particularly through in vivo localization studies and in vitro biochemical assay, in order to make a case for either role in teichoic acid biogenesis. We have shown that TagB associates peripherally with the intracellular face of the cell membrane in vivo. We have also produced recombinant TagB and used it to demonstrate the enzymatic incorporation of labeled glycerol phosphate onto a membrane-bound acceptor. The data collected from this and the accompanying study are strongly supportive of a role for TagB in B. subtilis 168 teichoic acid biogenesis as the CDP-glycerol:N-acetyl-beta-d-mannosaminyl-1,4-N-acetyl-d-glucosaminyldiphosphoundecaprenyl glycerophosphotransferase. Here we use the trivial name "Tag primase."  相似文献   

2.
The TagF protein from Bacillus subtilis 168 is the poly(glycerol phosphate) polymerase responsible for the synthesis of wall teichoic acid and is the prototype member of a poorly understood family of similar teichoic acid synthetic enzymes. Here we describe in vitro and in vivo characterization of TagF, which localizes the active site to the carboxyl terminus of the protein and identifies residues that are critical for catalysis. We also establish the first mechanistic link among TagF and similar proteins by demonstrating that the identified residues are also critical in the function of TagB, a homologous enzyme implicated as the glycerophosphotransferase responsible for priming poly(glycerol phosphate) synthesis. We investigated the dependence of TagF activity on pH and showed that deprotonation of a residue with a pK(a) near neutral is critical for proper function. Alteration of histidine residues 474 and 612 by site-directed mutagenesis abolished TagF activity in vitro (5000-fold reduction in k(cat)/K(m)) while variants in four other conserved acidic residues showed minimal loss of activity. Complementation using H474A and H612A mutant alleles failed to suppress a lethal temperature-sensitive tagF defect in vivo despite confirmation of robust expression by Western blot. When corresponding mutations were made to the homologous tagB gene, these alleles were unable to suppress a tagB temperature-sensitive lethal phenotype. These results extend the mechanistic observations for TagF across a wider family of enzymes and provide the first biochemical evidence for the relatedness of these two enzymes.  相似文献   

3.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

4.
We report the first characterization of a recombinant protein involved in the polymerization of wall teichoic acid. Previously, a study of the teichoic acid polymerase activity associated with membranes from Bacillus subtilis 168 strains bearing thermosensitive mutations in tagB, tagD, and tagF implicated TagF as the poly(glycerol phosphate) polymerase (Pooley, H. M., Abellan, F. X., and Karamata, D. (1992) J. Bacteriol. 174, 646-649). In the work reported here, we have demonstrated an unequivocal role for tagF in the thermosensitivity of one such mutant (tagF1) by conditional complementation at the restrictive temperature with tagF under control of the xylose promoter at the amyE locus. We have overexpressed and purified recombinant B. subtilis TagF protein, and we provide direct biochemical evidence that this enzyme is responsible for polymerization of poly(glycerol phosphate) teichoic acid in B. subtilis 168. Recombinant hexahistidine-tagged TagF protein was purified from Escherichia coli and was used to develop a novel membrane pelleting assay to monitor poly(glycerol phosphate) polymerase activity. Purified TagF was shown to incorporate radioactivity from its substrate CDP-[(14)C]glycerol into a membrane fraction in vitro. This activity showed a saturable dependence on the concentration of CDP-glycerol (K(m) of 340 microm) and the membrane acceptor (half-maximal activity at 650 microg of protein/ml of purified B. subtilis membranes). High pressure liquid chromatography analysis confirmed the polymeric nature of the reaction product, approximately 35 glycerol phosphate units in length.  相似文献   

5.
The membrane teichoic acid of Staphylococcus lactis I3   总被引:5,自引:3,他引:2  
1. Teichoic acid was isolated by extraction with trichloroacetic acid of the membrane fraction of disrupted cells of Staphylococcus lactis I3. 2. The purified material contains glycerol, phosphate and alanine, but little or no sugar or amino sugar. 3. A study of the products of hydrolysis with acid and alkali established that the membrane teichoic acid is a (1-->3)-linked poly(glycerol phosphate) that differs in structure from the glycerol teichoic acid in the wall of this organism. 4. The alanine ester residues show the characteristic high lability to alkali and are thus distinguishable from the more stable alanine ester residues of the wall teichoic acid. 5. The significance of these structural features and the possible function of teichoic acids are discussed.  相似文献   

6.
The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Bacillus subtilis 168, using phage-resistant mutants implicated tagE (also called gtaA and rodD) as the gene coding for the wall teichoic acid glycosyltransferase. This study and others have provided only indirect evidence to support a role for TagE in wall teichoic acid glycosylation. In this work, we showed that deletion of tagE resulted in the loss of α-glucose at the C-2 position of glycerol in the poly(glycerol phosphate) polymer backbone. We also reported the first kinetic characterization of pure, recombinant wall teichoic acid glycosyltransferase using clean synthetic substrates. We investigated the substrate specificity of TagE using a wide variety of acceptor substrates and found that the enzyme had a strong kinetic preference for the transfer of glucose from UDP-glucose to glycerol phosphate in polymeric form. Further, we showed that the enzyme recognized its polymeric (and repetitive) substrate with a sequential kinetic mechanism. This work provides direct evidence that TagE is the wall teichoic acid glycosyltransferase in B. subtilis 168 and provides a strong basis for further studies of the mechanism of wall teichoic acid glycosylation, a largely uncharted aspect of wall teichoic acid biogenesis.  相似文献   

7.
The role of cytidine diphosphate (CDP)-glycerol in gram-positive bacteria whose walls lack poly(glycerol phosphate) was investigated. Membrane preparations from Staphylococcus aureus H, Bacillus subtilis W23, and Micrococcus sp. 2102 catalyzed the incorporation of glycerol phosphate residues from radioactive CDP-glycerol into a water-soluble polymer. In toluenized cells of Micrococcus sp. 2102, some of this product became linked to the wall. In each case, maximum incorporation of glycerol phosphate residues required the presence of the nucleotide precursors of wall teichoic acid and of uridine diphosphate-N-acetylglucosamine. In membrane preparations capable of synthesizing peptidoglycan, vancomycin caused a decrease in the incorporation of isotope from CDP-glycerol into polymer. Synthesis of the poly (glycerol phosphate) unit thus depended at an early stage on the concomitant synthesis of wall teichoic acid and later on the synthesis of peptidoglycan. It is concluded that CDP-glycerol is the biosynthetic precursor of the tri(glycerol phosphate) linkage unit between teichoic acid and peptidoglycan that has recently been characterized in S. aureus H.  相似文献   

8.
Preparations of membrane plus wall derived from Bacillus subtilis W23 were used to study the in vitro synthesis of peptidoglycan and teichoic acid and their linkage to the preexisting cell wall. The teichoic acid synthesis showed an ordered requirement for the incorporation of N-acetylglucosamine from uridine 5'-diphosphate (UDP)-N-acetylglucosamine followed by addition of glycerol phosphate from cytidine 5'-diphosphate (CDP)-glycerol and finally by addition of ribitol phosphate from CDP-ribitol. UDP-N-acetylglucosamine was not only required for the synthesis of the teichoic acid, but N-acetylglucosamine residues formed an integral part of the linkage unit attaching polyribitol phosphate to the cell wall. Synthesis of the teichoic acid was exquisitely sensitive to the antibiotic tunicamycin, and this was shown to be due to the inhibition of incorporation of N-acetylglucosamine units from UDP-N-acetylglucosamine.  相似文献   

9.
The stepwise formation and characterization of linkage unit intermediates and their functions in ribitol teichoic acid biosynthesis were studied with membranes obtained from Staphylococcus aureus H and Bacillus subtilis W23. The formation of labeled polymer from CDP-[14C]ribitol and CDP-glycerol in each membrane system was markedly stimulated by the addition of N-acetylmannosaminyl(beta 1----4)N-acetylglucosamine (ManNAc-GlcNAc) linked to pyrophosphorylyisoprenol. Whereas incubation of S. aureus membranes with CDP-glycerol and ManNAc-[14C]GlcNAc-PP-prenol led to synthesis of (glycerol phosphate) 1-3-ManNAc-[14C]GlcNAc-PP-prenol, incubation of B. subtilis membranes with the same substrates yielded (glycerol phosphate)1-2-ManNAc-[14C]GlcNAc-PP-prenol. In S. aureus membranes, (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol as well as (glycerol phosphate)3-ManNAc-[14C]GlcNAc-PP-prenol served as an acceptor for ribitol phosphate units, but (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol did not. In B. subtilis W23 membranes, (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol served as a better acceptor for ribitol phosphate units than (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol. In this membrane system (ribitol phosphate)-(glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol was formed from ManNAc-[14C]GlcNAc-PP-prenol, CDP-glycerol and CDP-ribitol. The results indicate that (glycerol phosphate)1-3-ManNAc-GlcNAc-PP-prenol and (glycerol phosphate)1-2-ManNac-GlcNAc-PP-prenol are involved in the pathway for the synthesis of wall ribitol teichoic acids in S. aureus H and B. subtilis W23 respectively.  相似文献   

10.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

11.
The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.  相似文献   

12.
Teichoic acid synthesis in Bacillus stearothermophilus   总被引:3,自引:1,他引:2       下载免费PDF全文
1. Particulate enzyme preparations obtained from Bacillus stearothermophilus B65 by digestion with lysozyme were shown to catalyse teichoic acid synthesis. With CDP-glycerol as sole substrate the preparations synthesized 1,3-poly(glycerol phosphate). It was characterized by alkaline hydrolysis, by glucosylation to the alkali-stable 2-glucosyl-1,3-poly(glycerol phosphate) with excess of UDP-glucose and a Bacillus subtilis Marburg enzyme system, by degradation of this latter product with 60%HF and periodate oxidation of the resulting glucosylglycerol. The specificity of the B. subtilis system previously reported (Glaser & Burger, 1964), was confirmed in the present work. 2. Pulse-labelling experiments, followed by periodate oxidation of the product and isolation of formaldehyde from the glycerol terminus of the polymer, showed that the B. stearothermophilus enzyme system transferred glycerol phosphate units to the glycerol end of the chain. The transfer reaction was irreversible. It was not determined if these poly(glycerol phosphate) chains were synthesized de novo, but it was shown that the newly synthesized oligomers were bound to much larger molecules. 3. When the B. stearothermophilus enzyme system was supplied with both CDP-glycerol and UDP-glucose, 1-glucosyl-2,3-poly(glycerol phosphate) was synthesized in addition to the 1,3-isomer. The former polymer was characterized by acid and alkaline hydrolysis, degradation with HF and periodate oxidation of the resulting glucosylglycerol, and periodate oxidation of the intact polymer followed by mild acid hydrolysis. This latter procedure removed the glucose substituents without disrupting the poly(glycerol phosphate) chain. 4. The poly(glycerol phosphate) isomers were distinguished by glucosylation with the B. subtilis enzymes and alkaline hydrolysis, the 2,3-isomer remaining alkali-labile. The proportion of 2,3-poly(glycerol phosphate) in the product increased with increasing amounts of UDP-glucose in the incubation mixture, but the total glycerol phosphate incorporated into products remained constant. It is suggested that the synthetic pathways of the two poly(glycerol phosphate) species may share a rate-limiting step.  相似文献   

13.
Preparations of purified cell walls from Staphylococcus aureus were shown to contain small amounts of phospholipid and glycerol teichoic acid. Since these are components of the cell membrane, it is probable that the wall itself contains no lipid, but does retain fragments of membrane because of physical connections between wall and membrane. In walls of S. aureus strain 52A5, which completely lacks ribitol teichoic acid, the only phosphorylated compound identified as a genuine wall component was a phosphorylated derivative of murein that gave rise to muramic acid phosphate on acid hydrolysis. Muramic acid phosphate was also identified in hydrolysates of walls from S. aureus H and strain 52A2.  相似文献   

14.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

15.
1. Walls of Staphylococcus epidermidis I2 contain 30% (w/w) of a glycerol teichoic acid containing phosphate, d-alanine and d-glucose in the molecular proportions 1:0.25:0.50. 2. The teichoic acid was isolated by extraction with trichloroacetic acid and with dilute aqueous NN-dimethylhydrazine at pH7, and was shown to be a (1-->3)-linked poly(glycerol phosphate) containing beta-d-glucopyranosyl and d-alanyl ester substituents. 3. 2-O-beta-d-Glucopyranosylglycerol was isolated and characterized as its crystalline hexa-O-acetate. 4. Unlike that of certain other bacteria, the peptidoglycan component of the wall is not solubilized by NN-dimethylhydrazine. 5. The membrane teichoic acid is also a (1-->3)-linked poly(glycerol phosphate) but contains a smaller proportion of glucosyl substituents.  相似文献   

16.
An antigenic determinant isolated from a strain of the Gram-negative bacterium Butyrivibrio fibrisolvens reacted with specific antisera to the polyglycerophosphate backbone of membrane teichoic acids of lactobacilli. It gave a reaction of identity with membrane glycerol lipoteichoic acid and glycerol teichoic acid preparations from lactobacilli, and with phenol extracts of other Gram-positive bacteria. The antigen-antibody reactions was strongly inhibited by glycerol-phosphoryl-glycerol-phosphoryl-glycerol and the chemical composition was consistent with glycerol teichoic acid. It was concluded that this Gram-negative bacterium contained a glycerol teichoic acid whose polyglycerophospate backbone was acting as antigenic determinant. Extracts of 33 out of 52 other strains of butyrivibrios examined gave similar reactions.  相似文献   

17.
The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.  相似文献   

18.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

19.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

20.
1. The synthesis of peptidoglycan and teichoic acids by cell-free preparations from Bacillus licheniformis A.T.C.C. 9945 and Bacillus subtilis N.C.T.C. 3610 has been studied under a variety of conditions. 2. It was shown that poly(glycerol phosphate) is synthesized through a lipid intermediate, and it is concluded from this and other work that all major bacterial wall polymers are formed in a similar manner through such intermediates. 3. Close interrelation between the synthesis of peptidoglycan and teichoic acids was demonstrated, and inhibition studies confirm that the polyprenol phosphate molecules participating in the synthesis of peptidoglycan are shared with the systems that synthesize teichoic acids. 4. Nucleotides for the synthesis of one polymer are inhibitory towards synthesis of the other, and these effects can be enhanced or diminished by preincubation of the enzyme system with appropriate nucleotide precursors. 5. It is concluded that the return of undecaprenol phosphate to a common pool occurs only after the completion of polymer chains, and not after each cycle in the attachment of individual repeating units. This and other observations support a model for bacterial wall synthesis in which the multi-enzyme systems for each polymer are closely aligned in the membrane, with a molecule of undecaprenol phosphate located between them in a manner that enables it to be shared. The general mechanisms of wall synthesis and its control are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号