首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Form and Function in Reptilian Circulations   总被引:4,自引:2,他引:2  
Consistent with the great variation in their circulatory morphology,there are distinct variations in the cardiovascular physiologyof extant reptiles. The chelonian and squamate reptiles havea complexly structured heart that includes three partially separatedventricular cava. In most species (under most conditions), theventricle acts as a single pressure pump perfusing both thepulmonary and systemic circuits. However, the varanid lizardsprovide a striking exception. Subtle evolutionary changes incardiac morphology allow the ventricle of the varanid lizardto divide functionally during systole into a low pressure, pulmonarypump and a high pressure, systemic pump. The crocodilians representyet another anatomical and physiological pattern. The ventricleis completely divided into left and right chambers as in homeotherms,but the systemic and pulmonary circuits may still communicatethrough the left aorta that arises from the right ventricle. A fundamental feature of all reptilian circulations is the abilityto regulate the distribution of cardiac output between systemicand pulmonary circuits via central vascular blood shunts.Regardlessof species, mechanisms for regulating intracardiac shuntinginvolve changes in the balance between peripheral resistanceof the pulmonary and systemic circulations, and adjustmentsin cardiac performance per se. Several hypotheses are presentedthat suggest selective advantages for central vascular shuntingin intermittent breathing reptiles with variable body temperatureand metabolic rate.  相似文献   

2.
3.
《Cell》2011,147(4):711-713
  相似文献   

4.
SYNOPSIS. Paleontology and the fossil record contribute an historicalperspective on the form-function relationship that is essentialto an understanding of the particular range of biological formsand functions that exist in the living world. The record containsrich evidence of forms and functions that do not exist in themodern world and provides a context for exploring arenas oftheoretical possibility and impossibility for organisms. Althoughthe basic data of the fossil record are static forms and patternsin the rocks, paleontologists have developed methods of inferringfunction. Analogy is the most important source of hypothesesfor the function of extinct organisms and enigmatic structures.Paleontological analogy frequently extends beyond biologicalform and structure to engineering solutions in familiar simplemachines and a variety of other human artifacts. Three tools have proved especially useful in the analysis andinterpretation of form in fossils. The paradigm method is auseful procedure for rigorous evaluation of alternative functionalpossibilities for enigmatic structures in a predominantly adaptivecontext. Constructional morphology reaches beyond the adaptivecontext to provide a conceptual framework for understandingthe full range of factors that contribute to organic form. Theoreticalmorphology provides the basis for examining the range of formsand functions that have actually evolved against possible morphologicaland functional space. This essay is structured to provide applicationsof these paleontological tools and to encourage incorporationof paleontological data and perspective into instruction inintroductory biology courses.  相似文献   

5.
As an introduction to a symposium of nematode chemoreception, the anatomy of nematode chemosensilla, their distribution on plant parasitic nematodes, and their possible functional roles is briefly reviewed. Comparison of nematode chemosensilla with those of other animals shows their greater resemblance to olfactory primary sense cells of vertebrates. Although the sensory process is obviously derived from a cilium, the absence of many ciliary features is noted. Retention of the ciliary necklace may be important functionally. A simple model is proposed, wherein binding of stimulant molecules to receptors in the membrane of the cilium-derived process results in entry of Na⁺ and Ca⁺⁺ (the latter via the ciliary necklace) to produce a receptor potential that spreads along the dendrite to the cell body where action potentials continue along the short axon to synapses.  相似文献   

6.
The statistical test that allows us to assign a community consisting of a competitive species to one of three groups differing in the level of species diversity is substantiated. This test is derived from the Motomura–Whittaker model, which describes the normal relationship of species abundance in their ordered list. The amphipod community is used as an example.  相似文献   

7.
8.
The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium''s maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.  相似文献   

9.
《Autophagy》2013,9(3):247-249
In addition to its familiar role in non-selective bulk degradation of cellular material, autophagy can also bring about specific changes in the structure and function of cells. Autophagy has been proposed to operate in a substrate-selective mode to carry out this function, although evidence to demonstrate selectivity has been lacking. A recent study of synapse formation in the nervous system of the nematode Caenorhabditis elegans now provides experimental evidence for substrate-selective autophagy. Synapses form when presynaptic cells contact their postsynaptic partners during development. This contact induces the assembly of synaptically-localized protein complexes in the postsynaptic cell that contain scaffolding proteins and neurotransmitter receptors. When presynaptic contact was blocked, autophagy in the postsynaptic cell was induced. Substrate selectivity was evident in this system: the g-aminobutyric acid type A receptor (GABAA receptor), an integral-membrane neurotransmitter receptor, trafficked from the cell surface to autophagosomes. By contrast, the acetylcholine receptor, a structurally-similar neurotransmitter receptor, remained on the cell surface. This result provides experimental support for the idea that autophagy can bring about changes in cell structure and behavior by degrading specific cellular proteins, particularly cell surface receptors that are often important for regulating cell growth, differentiation and function.

Addendum to:

Presynaptic Terminals Independently Regulate Synaptic Clustering and Autophagy of GABAA Receptors in Caenorhabditis elegans

.A.M. Rowland, J.E. Richmond, J.G. Olsen, D.H. Hall and B. A. Bamber

J Neurosci 2006; 26:1711-20  相似文献   

10.
11.
Experimental and clinical data strongly support a role for the eosinophil in the pathogenesis of asthma, allergic and parasitic diseases, and hypereosinophilic syndromes, in addition to more recently identified immunomodulatory roles in shaping innate host defense, adaptive immunity, tissue repair/remodeling, and maintenance of normal tissue homeostasis. A seminal finding was the dependence of allergic airway inflammation on eosinophil-induced recruitment of Th2-polarized effector T-cells to the lung, providing a missing link between these innate immune effectors (eosinophils) and adaptive T-cell responses. Eosinophils come equipped with preformed enzymatic and nonenzymatic cationic proteins, stored in and selectively secreted from their large secondary (specific) granules. These proteins contribute to the functions of the eosinophil in airway inflammation, tissue damage, and remodeling in the asthmatic diathesis. Studies using eosinophil-deficient mouse models, including eosinophil-derived granule protein double knock-out mice (major basic protein-1/eosinophil peroxidase dual gene deletion) show that eosinophils are required for all major hallmarks of asthma pathophysiology: airway epithelial damage and hyperreactivity, and airway remodeling including smooth muscle hyperplasia and subepithelial fibrosis. Here we review key molecular aspects of these eosinophil-derived granule proteins in terms of structure-function relationships to advance understanding of their roles in eosinophil cell biology, molecular biology, and immunobiology in health and disease.  相似文献   

12.
Mikoyan  V. D.  Burgova  E. N.  Borodulin  R. R.  Vanin  A. F. 《Biophysics》2020,65(6):972-980

The levels of the mononitrosyl iron complex with diethyldithiocarbamate that form in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite, or the vasodilating drug isosorbide dinitrate (Isoket®) have been assessed by electron paramagnetic resonance (EPR). The levels of the complex in mice that received binuclear dinitrosyl iron complexes with thiol-containing ligands or S-nitrosoglutathione do not change after the treatment of liver preparations with the strong reducing agent dithionite, in contrast to those formed after nitrite or isosorbide dinitrate administration, whose levels sharply increase after the same treatment. It is inferred that in the latter case an EPR-active mononitrosyl iron complex with diethyldithiocarbamate is produced with the absence or presence of dithionite in the reaction of NO formed from nitrite with Fe2+-diethyldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the former case, the mononitrosyl iron complex with diethyldithiocarbamate is produced by transition of iron-mononitrosyl fragments from already present iron-dinitrosyl groups of binuclear dinitrosyl complexes, whose content is three to four times higher than the content of the mononuclear form of these complexes in the tissue. The results we obtained indicate that when dinitrosyl iron complexes with thiol-containing ligands, either introduced into the body or produced with the participation of endogenous NO, appear in animal tissues in vivo, these complexes are presented in these tissues mainly in their diamagnetic, EPR-silent binuclear form.

  相似文献   

13.
Ectothermic organisms often face dramatic traverses of environmentaltemperature on a daily or seasonal basis; exemplars among thisgroup are invertebrates and fish of the rocky intertidal zone.Because of the extremes of temperature exposure, intertidalanimals have served as an excellent study system to examinethe expression of heat shock proteins (Hsps) in response tonatural variation in environmental temperature. Ecologicallyrelevant variation in Hsp expression has been observed withseasonal acclimatization, with small-scale temperature gradientsthat occur in microhabitats and between species with differentintertidal distributions. The maturing understanding of Hspexpression patterns in marine organisms has established a solidfoundation on which to build the next set of questions. In thispaper, I present an overview of the variation of Hsp expressionin intertidal animals in nature and then address two emergingareas of investigation in the ecological physiology of Hsps.One area addresses the plasticity of Hsp expression in marineinvertebrates and focuses on the mechanism of regulation ofHsp gene expression by environmental temperature. A second emergingarea of investigation concerns whether Hsps as molecular chaperonesdisplay functional diversity that correlates with species' adaptationtemperature.  相似文献   

14.
15.
In marine soft sediments, large organisms are potentially important players in the nonlinear interactions that occur among animals, their food, and their chemical environment, all of which influence the contribution of benthos to ecosystem function. We investigated the consequences of removing large individuals of two functionally contrasting benthic communities on nutrient regeneration, microphyte standing stock, and macrobenthic community composition. The experiment was conducted at two adjacent sites that were physically similar but biologically different, one dominated by large deposit feeders and the other by large suspension feeders. Chemical fluxes were measured in experimental plots, and sediments were sampled to assess changes in macrofauna, sediment grain size, organic content, and microphyte standing stock. Our results demonstrate that the removal of large suspension feeders or deposit feeders influenced the flux of nitrogen and oxygen, surficial sediment characteristics, and community composition. In the deposit-feeder community, interactions between nutrient regeneration and grazing highlight important feedbacks between large macrofauna and biogeochemical processes and production by microphytes, indicating that the loss of large infauna driven by increased rates of anthropogenic disturbance may lead to functional extinction and cause shifts in community structure and ecosystem performance.  相似文献   

16.
17.
18.
Septins are GTP-binding proteins that form filaments and higher-order structures on the cell cortex of eukaryotic cells and associate with actin and microtubule cytoskeletal networks. When assembled, septins coordinate cell division and contribute to cell polarity maintenance and membrane remodeling. These functions manifest themselves via scaffolding of cytosolic proteins and cytoskeletal networks to specific locations on membranes and by forming diffusional barriers that restrict lateral diffusion of proteins embedded in membranes. Notably, many neurodegenerative diseases and cancers have been characterized as having misregulated septins, suggesting that their functions are relevant to diverse diseases. Despite the importance of septins, little is known about what features of the plasma membrane influence septin recruitment and alternatively, how septins influence plasma membrane properties. Septins have been localized to the cell cortex at the base of cilia, the mother-bud neck of yeast, and branch points of filamentous fungi and dendritic spines, in cleavage furrows, and in retracting membrane protrusions in mammalian cells. These sites all possess some degree of curvature and are likely composed of distinct lipid pools. Depending on the context, septins may act alone or in concert with other cytoskeletal elements to influence and sense membrane properties. The degree to which septins react to and/or induce changes in shape and lipid composition are discussed here. As septins are an essential player in basic biology and disease, understanding the interplay between septins and the plasma membrane is critical and may yield new and unexpected functions.  相似文献   

19.
串联重复序列的物种差异及其生物功能   总被引:13,自引:0,他引:13  
高焕  孔杰 《动物学研究》2005,26(5):555-564
串联重复序列是指1-200个碱基左右的核心重复单位,以头尾相串联的方式重复多次所组成的重 复序列。它广泛存在于真核生物和一些原核生物的基因组中,并表现出种属、碱基组成等的特异性。在基因组 整体水平上,各种优势的重复序列类型不同。即使在同一重复序列类型内部,不同重复拷贝类别(如AT、AC 等)在基因组中的存在也表现出很大的差异。同时,这些重复序列类型和各重复拷贝类别在同一物种的不同染 色体间,以及基因的编码区和非编码区间也表现种属和碱基组成差异。这些差异显示了重复序列起源和进化的 复杂性,可能涉及到多种机制和因素,并与生物功能密切相关。另外,由于重复序列分析软件和统计标准还存 在算法、重复长度、完美性等问题,需要进一步探讨。此外,串联重复序列的自身进化关系、全基因组水平上 的进化地位、在基因组中的生物功能、重复序列数据库建立和应用研究等,将是今后研究的主要课题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号