首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In Saccharomyces cerevisiae, PTPA is encoded by two genes, YPA1 and YPA2. In order to examine the biological role of PTPA as potential regulator of protein phosphatase 2A (PP2A), we compared the phenotypes of the ypaDelta mutants with these of PP2A-deficient strains. While deletion of both YPA genes is lethal, deletion of YPA1 alone results in a phenotype resembling that of PP2A-deficient strains in specific aspects such as aberrant bud morphology, abnormal actin distribution, and similar growth defects under various growth conditions. These phenotypes were even more pronounced when YPA1 was deleted in a pph21Delta genetic background. Moreover, ypaDelta mutants are hypersensitive to nocodazole and show inappropriate mitotic spindle formation as previously described for mutants in the catalytic subunit of PP2A, suggesting that Ypa, like PP2A, has a function in mitotic spindle formation. These results are consistent with an in vivo role of Ypa as a regulator of PP2A. However, unlike a PP2A-deficient strain, ypaDelta mutants do not show a G2 arrest. Therefore, Ypa does not seem to play a role in the regulation of PP2A at this stage of the cell cycle. These results imply that Ypa regulates a specific subset of PP2A functions, possibly by controlling the subunit composition of PP2A.  相似文献   

2.
The protein phosphatase 2A (PP2A) phosphatase activator (PTPA) is an essential protein involved in the regulation of PP2A and the PP2A-like enzymes. In this study we demonstrate that PTPA and its yeast homologues Ypa1 and Ypa2 can induce a conformational change in some model substrates. Using these model substrates in different assays with and without helper proteases, this isomerase activity is similar to the isomerase activity of FKBP12, the human cyclophilin A, and one of its yeast homologs Cpr7 but dissimilar to the isomerase activity of Pin1. However, neither FKBP12 nor Cpr7 can reactivate the inactive form of PP2A. Therefore, PTPA belongs to a novel peptidyl-prolyl cis/trans-isomerase (PPIase) family. The PPIase activity of PTPA correlates with its activating activity since both are stimulated by the presence of Mg2+ATP, and a PTPA mutant (Delta208-213) with 400-fold less activity in the activation reaction of PP2A also showed almost no PPIase activity. The point mutant Asp205 --> Gly (in Ypa1) identified this amino acid as essential for both activities. Moreover, PTPA dissociates the inactive form from the complex with the PP2A methylesterase. Finally, Pro190 in the catalytic subunit of PP2A (PP2AC) could be identified as the target Pro isomerized by PTPA/Mg2+ATP since among the 14 Pro residues present in 12 synthesized peptides representing the microenvironments of these prolines in PP2AC, only Pro190 could be isomerized by PTPA/Mg2+ATP. This Pro190 is present in a predicted loop structure near the catalytic center of PP2AC and, if mutated into a Phe, the phosphatase is inactive and can no longer be activated by PTPA/Mg2+ATP.  相似文献   

3.
The Saccharomyces cerevisiae p21-activated kinases, Ste20p and Cla4p, have individual functions but appear to share an essential function(s) as well because a strain lacking both kinases is inviable. To learn more about the shared function, we sought new mutations that were lethal in the absence of CLA4. This approach led to the identification of at least 10 complementation groups designated NCS (need CLA4 to survive). As for ste20 cla4-75 mutants, most ncs cla4-75 double mutants were defective for septin localization during budding. One group, NCS1/RRD1 (YIL153w), did not confer this defect, however, and we investigated its function further. ncs1Delta cla4Delta cells arrested with elongated buds and short mitotic spindles. The morphological defects and lethality were suppressed by mutations that abrogate the cell cycle morphogenetic checkpoint, CDC28Y19F or swe1Delta. The connection to the cell cycle may be direct, as we detected a Cla4p-Cdc28p complex. NCS1 encodes a protein with significant similarity to a mammalian phosphotyrosyl phosphatase activator (PTPA) regulatory subunit for type 2A protein phosphatases (PP2As). Genetic and biochemical evidence suggested that the phosphatase Sit4p is a target for Ncs1p. First, CLA4 and SIT4 were synthetically lethal. Second, Ncs1p and its yeast paralog, Noh1p (Rrd2p), bound to the catalytic domain of Sit4p in vitro, and Ncs1p could be immunoprecipitated with Sit4p but not with another PP2A (Pph21p) from yeast cell extracts. Strains lacking both NCS1 and NOH1 were inviable and arrested as unbudded cells, implying that PTPA function is required for proper G(1) progression.  相似文献   

4.
Structure and mechanism of the phosphotyrosyl phosphatase activator   总被引:1,自引:0,他引:1  
Chao Y  Xing Y  Chen Y  Xu Y  Lin Z  Li Z  Jeffrey PD  Stock JB  Shi Y 《Molecular cell》2006,23(4):535-546
Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator, is a conserved protein from yeast to human. Here we report the 1.9 A crystal structure of human PTPA, which reveals a previously unreported fold consisting of three subdomains: core, lid, and linker. Structural analysis uncovers a highly conserved surface patch, which borders the three subdomains, and an associated deep pocket located between the core and the linker subdomains. The conserved surface patch and the deep pocket are responsible for binding to PP2A and ATP, respectively. PTPA and PP2A A-C dimer together constitute a composite ATPase. PTPA binding to PP2A results in a dramatic alteration of substrate specificity, with enhanced phosphotyrosine phosphatase activity and decreased phosphoserine phosphatase activity. This function of PTPA strictly depends on the composite ATPase activity. These observations reveal significant insights into the function and mechanism of PTPA and have important ramifications for understanding PP2A function.  相似文献   

5.
Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42-phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42-Sit4 complex and that of Rrd2 with the Tap42-PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42-phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Δ strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.  相似文献   

7.
The suppressor of the dis2 mutant (sds22+) has been shown to be an essential regulator in cell division of fission and budding yeast where its deletion causes mitotic arrest. Its role seems to take place through the activation of PP1 (protein phosphatase type 1) in Schizosaccharomyces pombe. In the trematode Schistosoma mansoni, we have identified the Sds22 homologue (SmSds), and the PP1 (SmPP1). We showed by using a GST (glutathione S-transferase) pull-down assay that the SmSds gene product interacts with SmPP1 and that the SmSds-SmPP1 complex is present in parasite extracts. Furthermore, we observed that SmSds inhibited PP1 activity. Functional studies showed that the microinjection of SmSds into Xenopus oocytes interacted with the Xenopus PP1 and disrupted the G2/M cell-cycle checkpoint by promoting progression to GVBD (germinal vesicle breakdown). Similar results showing the appearance of GVBD were observed when oocytes were treated with anti-PP1 antibodies. Taken together, these observations suggest that SmSds can regulate the cell cycle by binding to PP1.  相似文献   

8.
Protein phosphatase 2A (PP2A) is a major threonine/serine phosphatase that is involved in regulating a variety of cellular processes. It has been shown in both yeast and mammals that the PP2A catalytic subunit (PP2Ac) is methyl-esterified at the conserved C-terminal Leu residue. The recent characterization of a mammalian PP2A carboxyl methyltransferase has led to the identification of two ORFs in Saccharomyces cerevisiae as potential orthologues of the mammalian PP2A methyltransferase: protein phosphatase methyltransferase 1 (PPM1) and protein phosphatase methyltransferase 2 (PPM2). To experimentally identify the PP2A methyltransferase in yeast, we obtained deletion mutants of PPM1 and PPM2 and then constructed double mutants. Using in vivo-labeling techniques, we demonstrate that only the PPM1 gene is required for PP2Ac methylation at the C-terminus. Because yeast has at least three homologues of PP2Ac (PPH21, PPH22, and PPH3), we then asked whether all of these catalytic subunits are methylated by the PPM1 and/or PPM2 putative methyltransferases. We modified the segment corresponding to the N-terminal coding region of all three PP2Ac genomic genes with a hemagglutinin (HA) tag in the parent, ppm1, ppm2, and ppm1ppm2 mutant genetic backgrounds. Using immuoprecipitation with anti-HA antibodies followed by methyl ester analysis, we showed that only in the ppm1 mutant were both Pph21p and Pph22p not methylated. We did not detect any methylesterification of Pph3p under our conditions. Our results indicate that PPM1 is the sole methyltransferase responsible for methylating the two major homologues of PP2Ac in yeast. The function of the PPM2 gene product remains unclear.  相似文献   

9.
PTPA, an essential and specific activator of protein phosphatase 2A (PP2A), functions as a peptidyl prolyl isomerase (PPIase). We present here the crystal structures of human PTPA and of the two yeast orthologs (Ypa1 and Ypa2), revealing an all alpha-helical protein fold that is radically different from other PPIases. The protein is organized into two domains separated by a groove lined by highly conserved residues. To understand the molecular mechanism of PTPA activity, Ypa1 was cocrystallized with a proline-containing PPIase peptide substrate. In the complex, the peptide binds at the interface of a peptide-induced dimer interface. Conserved residues of the interdomain groove contribute to the peptide binding site and dimer interface. Structure-guided mutational studies showed that in vivo PTPA activity is influenced by mutations on the surface of the peptide binding pocket, the same mutations that also influenced the in vitro activation of PP2Ai and PPIase activity.  相似文献   

10.
Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase that is involved in regulating a plethora of signaling pathways in the cell, making its regulation a critical part of the well being of the cell. For example, three of the non-catalytic PP2A subunits have been linked to carcinogenic events. Therefore, the molecular basis for the complicated protein-protein interaction pattern of PP2A and its regulators is of special interest. The PP2A phosphatase activator (PTPA) protein is highly conserved from humans to yeast. It is an activator of PP2A and has been shown to be essential for a fully functional PP2A, but its mechanism of activation is still not well defined. We have solved the crystal structure of human PTPA to 1.6A. It reveals a two-domain protein with a novel fold comprised of 13 alpha-helices. We have identified a highly conserved cleft as a potential region for interaction with peptide segments of other proteins. Binding studies with ATP and its analogs are not consistent with ATP being a cofactor/substrate for PTPA as had previously been proposed. The structure of PTPA can serve as a basis for structure-function studies directed at elucidating its mechanism as an activator of PP2A.  相似文献   

11.
G R Alms  P Sanz  M Carlson    T A Haystead 《The EMBO journal》1999,18(15):4157-4168
Protein phosphatase 1 (Glc7p) and its binding protein Reg1p are essential for the regulation of glucose repression pathways in Saccharomyces cerevisiae. In order to identify physiological substrates for the Glc7p-Reg1p complex, we examined the effects of deletion of the REG1 gene on the yeast phosphoproteome. Analysis by two-dimensional phosphoprotein mapping identified two distinct proteins that were greatly increased in phosphate content in reg1Delta mutants. Mixed peptide sequencing identified these proteins as hexokinase II (Hxk2p) and the E1alpha subunit of pyruvate dehydrogenase. Consistent with increased phosphorylation of Hxk2p in response to REG1 deletion, fractionation of yeast extracts by anion-exchange chromatography identified Hxk2p phosphatase activity in wild-type strains that was selectively lost in the reg1Delta mutant. The phosphorylation state of Hxk2p and Hxk2p phosphatase activity was restored to wild-type levels in the reg1Delta mutant by expression of a LexA-Reg1p fusion protein. In contrast, expression of LexA-Reg1p containing mutations at phenylalanine in the putative PP-1C-binding site motif (K/R)(X)(I/V)XF was unable to rescue Hxk2p dephosphorylation in intact yeast or restore Hxk2p phosphatase activity. These results demonstrate that Reg1p targets PP-1C to dephosphorylate Hxk2p in vivo and that the motif (K/R)(X) (I/V)XF is necessary for its PP-1 targeting function.  相似文献   

12.
The Ipl1 protein kinase is essential for proper chromosome segregation and cell viability in the budding yeast Saccharomyces cerevisiae. We have previously shown that the temperature-sensitive growth phenotype of conditional ipl1-1ts mutants can be suppressed by a partial loss-of-function mutation in the GLC7 gene, which encodes the catalytic subunit (PP1C) of protein phosphatase 1, thus suggesting that this enzyme acts in opposition to the Ipl1 protein kinase in regulating yeast chromosome segregation. We report here that the Glc8 protein, which is related in primary sequence to mammalian inhibitor 2, also participates in this regulation. Like inhibitor 2, the Glc8 protein is heat stable, exhibits anomalous electrophoretic mobility, and functions in vitro as an inhibitor of yeast as well as rabbit skeletal muscle PP1C. Interestingly, overexpression as well as deletion of the GLC8 gene results in a partial suppression of the temperature-sensitive growth phenotype of ipl1ts mutants and also moderately reduces the amount of protein phosphatase 1 activity which is assayable in crude yeast lysates. In addition, the chromosome missegregation phenotype caused by an increase in the dosage of GLC7 is totally suppressed by the glc8-delta 101::LEU2 deletion mutation. These findings together suggest that the Glc8 protein is involved in vivo in the activation of PP1C and that when the Glc8 protein is overproduced, it may also inhibit PP1C function. Furthermore, site-directed mutagenesis studies of GLC8 suggest that Thr-118 of the Glc8 protein, which is equivalent to Thr-72 of inhibitor 2, may play a central role in the ability of this protein to activate and/or inhibit PP1C in vivo.  相似文献   

13.
Goyal A  Simanis V 《Genetics》2012,190(4):1235-1250
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis. Cdc7p is the first kinase in the core SIN; we have screened genetically for SIN regulators by isolating cold-sensitive suppressors of cdc7-24. Our screen yielded a mutant in SPAC1782.05, one of the two fission yeast orthologs of mammalian phosphotyrosyl phosphatase activator. We have characterized this gene and its ortholog SPAC4F10.04, which we have named ypa2 and ypa1, respectively. We find that Ypa2p is the major form of protein phosphatase type 2A activator in S. pombe. A double ypa1-Δ ypa2-Δ null mutant is inviable, indicating that the two gene products have at least one essential overlapping function. Individually, the ypa1 and ypa2 genes are essential for survival only at low temperatures. The ypa2-Δ mutant divides at a reduced cell size and displays aberrant cell morphology and cytokinesis. Genetic analysis implicates Ypa2p as an inhibitor of the septation initiation network. We also isolated a cold-sensitive allele of ppa2, the major protein phosphatase type 2A catalytic subunit, implicating this enzyme as a regulator of the septation initiation network.  相似文献   

14.
The protein called 'suppressor of the dis2 mutant (sds22+)' is an essential regulator of cell division in fission and budding yeasts, where its deletion causes mitotic arrest. Its role in cell cycle control appears to be mediated through the activation of protein phosphatase type 1 (PP1) in Schizosaccharomyces pombe. We have identified the Plasmodium falciparum Sds22 orthologue, which we designated PfLRR1 as it belongs to the leucine-rich repeat protein family. We showed by glutathione-S-transferase pull-down assay that the PfLRR1 gene product interacts with PfPP1, that the PfLRR1-PfPP1 complex is present in parasite extracts and that PfLRR1 inhibits PfPP1 activity. Functional studies in Xenopus oocytes revealed that PfLRR1 interacted with endogenous PP1 and overcame the G2/M cell cycle checkpoint by promoting progression to germinal vesicle breakdown (GVBD). Confirmatory results showing the appearance of GVBD were observed when oocytes were treated with anti-PP1 antibodies or okadaic acid. Taken together, these observations suggest that PfLRR1 can regulate the cell cycle by binding to PP1 and regulating its activity.  相似文献   

15.
The bimG11 allele causes a conditional growth defect in the fungus Aspergillus nidulans preventing both progression through mitosis and normal polar growth. Previously, we have shown that the bimG11 mutation increases the phosphorylation of nuclear proteins and that the gene encodes a protein similar to mammalian type 1 protein phosphatase. Assay of protein phosphatase activity in protein extracts of Aspergillus demonstrates directly that type 1 phosphatase activity is greatly reduced in the mutant at restrictive temperature. Expression of a muscle type 1 protein phosphatase fully complements all aspects of the bimG11 phenotype, and restores the level of PP1 activity to nearly normal. Expression of the related phosphatase, PP2A, does not complement the bimG11 mutation, showing that complementation can only be achieved by the type 1 gene. This clearly demonstrates that the phenotype of bimG11 is due to reduced PP1 activity and that the PP1 catalytic subunit is functionally conserved over a wide span of evolution.  相似文献   

16.
Inosine (I) at position 34 (wobble position) of tRNA is formed by the hydrolytic deamination of a genomically encoded adenosine (A). The enzyme catalyzing this reaction, termed tRNA A:34 deaminase, is the heterodimeric Tad2p/ADAT2.Tad3p/ADAT3 complex in eukaryotes. In budding yeast, deletion of each subunit is lethal, indicating that the wobble inosine tRNA modification is essential for viability; however, most of its physiological roles remain unknown. To identify novel cell cycle mutants in fission yeast, we isolated the tad3-1 mutant that is allelic to the tad3(+) gene encoding a homolog of budding yeast Tad3p. Interestingly, the tad3-1 mutant cells principally exhibited cell cycle-specific phenotype, namely temperature-sensitive and irreversible cell cycle arrest both in G(1) and G(2). Further analyses revealed that in the tad3-1 mutant cells, the S257N mutation that occurred in the catalytically inactive Tad3 subunit affected its association with catalytically active Tad2 subunit, leading to an impairment in the A to I conversion at position 34 of tRNA. In tad3-1 mutant cells, the overexpression of the tad3(+) gene completely suppressed the decreased tRNA inosine content. Notably, the overexpression of the tad2(+) gene partially suppressed the temperature-sensitive phenotype and the decreased tRNA inosine content, indicating that the tad3-1 mutant phenotype is because of the insufficient I(34) formation of tRNA. These results suggest that the wobble inosine tRNA modification is essential for cell cycle progression in the G(1)/S and G(2)/M transitions in fission yeast.  相似文献   

17.
F C Lin  K T Arndt 《The EMBO journal》1995,14(12):2745-2759
We have prepared a temperature-sensitive Saccharomyces cerevisiae type 2A phosphatase (PP2A) mutant, pph21-102. At the restrictive temperature, the pph21-102 cells arrested predominantly with small or aberrant buds, and their actin cytoskeleton and chitin deposition were abnormal. The involvement of PP2A in bud growth may be due to the role of PP2A in actin distribution during the cell cycle. Moreover, after a shift to the non-permissive temperature, the pph21-102 cells were blocked in G2 and had low activity of Clb2-Cdc28 kinase. Expression of Clb2 from the S.cerevisiae ADH promoter in pph21-102 cells was able to partially bypass the G2 arrest in the first cell cycle, but was not able to stimulate passage through a second mitosis. These cells had higher total amounts of Clb2-Cdc28 kinase activity, but the Clb2-normalized specific activity was lower in the pph21-102 cells compared with wild-type cells. Unlike wild-type strains, a PP2A-deficient strain was sensitive to the loss of MIH1, which is a homolog of the Schizosaccharomyces pombe mitotic inducer cdc25+. Furthermore, the cdc28F19 mutation cured the synthetic defects of a PP2A-deficient strain containing a deletion of MIH1. These results suggest that PP2A is required during G2 for the activation of Clb-Cdc28 kinase complexes for progression into mitosis.  相似文献   

18.
Regulation of the TAK1 signaling pathway by protein phosphatase 2C   总被引:8,自引:0,他引:8  
Protein phosphatase 2C (PP2C) is implicated in the negative regulation of stress-activated protein kinase cascades in yeast and mammalian cells. In this study, we determined the role of PP2Cbeta-1, a major isoform of mammalian PP2C, in the TAK1 signaling pathway, a stress-activated protein kinase cascade that is activated by interleukin-1, transforming growth factor-beta, or stress. Ectopic expression of PP2Cbeta-1 inhibited the TAK1-mediated mitogen-activated protein kinase kinase 4-c-Jun amino-terminal kinase and mitogen-activated protein kinase kinase 6-p38 signaling pathways. In vitro, PP2Cbeta-1 dephosphorylated and inactivated TAK1. Coimmunoprecipitation experiments indicated that PP2Cbeta-1 associates with the central region of TAK1. A phosphatase-negative mutant of PP2Cbeta-1, PP2Cbeta-1 (R/G), acted as a dominant negative mutant, inhibiting dephosphorylation of TAK1 by wild-type PP2Cbeta-1 in vitro. In addition, ectopic expression of PP2Cbeta-1(R/G) enhanced interleukin-1-induced activation of an AP-1 reporter gene. Collectively, these results indicate that PP2Cbeta negatively regulates the TAK1 signaling pathway by direct dephosphorylation of TAK1.  相似文献   

19.
Because Ca(2+) signaling of budding yeast, through the activation of calcineurin and the Mpk1/Slt2 mitogen-activated protein kinase cascade, performs redundant function(s) in the events essential for growth, the simultaneous deletion of both these pathways (Delta cnb1 Delta mpk1) leads to lethality. A PTC4 cDNA that encodes a protein phosphatase belonging to the PP2C family was obtained as a high dosage suppressor of the lethality of Delta cnb1 Delta mpk1 strain. Overexpression of PTC4 led to a decrease in the high osmolarity-induced Hog1 phosphorylation, and HOG1 deletion remarkably suppressed the synthetic lethality, indicating an antagonistic role of the high osmolarity glycerol (HOG) pathway and the Ca(2+) signaling pathway in growth regulation. The calcineurin-Crz1 pathway was required for the down-regulation of the HOG pathway. Analysis of the time course of actin polarization, bud formation, and the onset of mitosis in synchronous cell cultures demonstrated that calcineurin negatively regulates actin polarization at the bud site, whereas the HOG pathway positively regulates bud formation at a later step after actin has polarized.  相似文献   

20.
The Saccharomyces cerevisiae GLC7 gene encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is required for cell growth. A cold-sensitive glc7 mutant (glc7Y170) arrests in G2/M but remains viable at the restrictive temperature. In an effort to identify additional gene products that function in concert with PP1 to regulate growth, we isolated a mutation (gpp1) that exacerbated the growth phenotype of the glc7Y170 mutation, resulting in rapid death of the double mutant at the nonpermissive temperature. We identified an additional gene, EGP1, as an extra-copy suppressor of the glc7Y170 gpp1-1 double mutant. The nucleotide sequence of EGP1 predicts a leucine-rich repeat protein that is similar to Sds22, a protein from the fission yeast Schizosaccharomyces pombe that positively modulates PP1. EGP1 is essential for cell growth but becomes dispensable upon overexpression of the GLC7 gene. Egp1 and PP1 directly interact, as assayed by coimmunoprecipitation. These results suggest that Egp1 functions as a positive modulator of PP1 in the growth control of S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号