首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EPR studies of the methylamine dehydrogenase (MADH)–amicyanin and MADH–amicyanin–cytochrome c551i crystalline complexes have been performed on randomly oriented microcrystals before and after exposure to the substrate, methylamine, as a function of pH. The results show that EPR signals from the redox centers present in the various proteins can be observed simultaneously. These results complement and extend earlier studies of the complexes under similar conditions that utilized single-crystal polarized absorption microspectrophotometry. The binary complex shows a blue copper axial signal, characteristic of oxidized amicyanin. After reaction of substrate with the MADH coenzyme tryptophan tryptophylquinone (TTQ), the binary complex exhibits an equilibrium mixture of oxidized copper/reduced TTQ and reduced copper/TTQ· radical, whose ratio is dependent on the pH. In the oxidized ternary complex, the same copper axial signal is observed superimposed on the low-spin ferric heme features characteristic of oxidized cytochrome c551i. After addition of substrate to the ternary complex, a decrease of the copper signal is observed, concomitant with the appearance of the radical signal derived from the semiquinone form of TTQ. The equilibrium distribution of electrons between TTQ and copper as a function of pH is similar to that observed for the binary complex. This result was essential to establish that the copper center retains its function within the crystalline ternary complex. At high pH, with time the low-spin heme EPR features disappear and the spectrum indicates that full reduction of the complex by substrate has occurred.  相似文献   

2.
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them.  相似文献   

3.
Methylamine dehydrogenase (MADH) is produced by a range of gram-negative methylotrophic and autotrophic bacteria, and allows the organisms to utilise methylamine as the sole source of carbon. The enzyme catalyses the oxidation of methylamine to formaldehyde and ammonia, leaving it in a two-electron reduced state. To complete the catalytic cycle, MADH is reoxidised via an electron transfer (ET) chain. The redox center in the enzyme is the organic cofactor tryptophan tryptophylquinone (TTQ) derived from the posttranslational modification of two Trp residues in the protein. This cofactor has spectral features in the visible region, which change during catalytic turnover, defining spectrally distinct reaction intermediates that reflect the electronic state of the TTQ. In the case of the Paracoccus denitrificans enzyme the physiologic ET chain involves the protein redox partner amicyanin (a blue copper protein). A stable binary (MADH/amicyanin) complex can be formed, and its crystal structure has been solved to 2.5 A resolution by Chen et al. [Biochemistry 21 (1992) 4959]. These crystals were shown to be competent for catalysis and ET by Merli et al. [J. Biol. Chem. 271 (1996) 9177] using single crystal polarised absorption spectroscopy. Through a novel combination of single crystal visible microspectrophotometry, X-ray crystallography and freeze-trapping, we have trapped reaction intermediates of the enzyme in complex with its physiological redox partner amicyanin in the crystalline state. We will present data confirming that catalysis and ET in the binary complex crystals can be tracked by single crystal visible microspectrophotometry. We will also show that the reaction pathway is unperturbed by the presence of cryoprotectant solution, enabling direct freeze-trapping of reaction intermediates within the crystal. We will present new data demonstrating that the binary complex crystals are also capable of exhibiting UV light-dependent oxidase activity, as observed in solution [Biochim. Biophys. Acta 1364 (1998) 297].  相似文献   

4.
Paracoccus denitrificans produces two primary enzymes for the amine oxidation, tryptophan-tryptophylquinone (TTQ)-containing methylamine dehydrogenase (MADH) and quinohemoprotein amine dehydrogenase (QH-AmDH). QH-AmDH has a novel cofactor, cysteine tryptophylquinone (CTQ) and two hemes c. In this work, the redox potentials of three redox centers in QH-AmDH were determined by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. Kinetics of the electron transfer from QH-AmDH to three kinds of metalloproteins, amicyanin, cytochrome c(550), and horse heart cytochrome c were examined on the basis of the theory of mediated-bioelectrocatalysis. All these metalloproteins work as a good electron acceptor of QH-AmDH and donate the electron to the terminal oxidase of P. denitrificans, which was revealed by reconstitution of the respiratory chain. These properties are in marked contrast with those of MADH, which shows high specificity to amicyanin. These electron transfer kinetics are discussed in terms of thermodynamics and structural property.  相似文献   

5.
Polarized absorption microspectrophotometry has been used to detect catalysis and intermolecular electron transfer in single crystals of two multiprotein complexes: (1) the binary complex between Paracoccus denitrificans methylamine dehydrogenase, which contains tryptophan-tryptophylquinone (TTQ) as a cofactor, and its redox partner, the blue copper protein amicyanin; (2) the ternary complex between the same two proteins and cytochrome c-551i. Continuous wave electron paramagnetic resonance has been used to compare the state of copper in polycrystalline powders of the two systems. While catalysis and intermolecular electron transfer from reduced TTQ to copper are too fast to be accessible to our measurements, heme reduction occurs over a period of several minutes. The observed rate constant is about four orders of magnitude lower than in solution. The analysis of the temperature dependence of this apparent constant provides values for the parameters H(AB), related to electronic coupling between the two centers, and lambda, the reorganizational energy, that are compatible with electron transfer being the rate-determining step. From these parameters and the known distance between copper and heme, it is possible to calculate the parameter beta, which depends on the nature of the intervening medium, obtaining a value typical of electron transfer across a protein matrix. These findings suggest that the ternary complex in solution might achieve a higher efficiency than the rigid crystal structure thanks to an as yet unidentified role of protein dynamics.  相似文献   

6.
Sun D  Chen ZW  Mathews FS  Davidson VL 《Biochemistry》2002,41(47):13926-13933
Methylamine dehydrogenase (MADH) possesses an alpha(2)beta(2) structure with each smaller beta subunit possessing a tryptophan tryptophylquinone (TTQ) prosthetic group. Phe55 of the alpha subunit is located where the substrate channel from the enzyme surface opens into the active site. Site-directed mutagenesis of alphaPhe55 has revealed roles for this residue in determining substrate specificity and binding monovalent cations at the active site. It is now shown that the alphaF55A mutation also increases the rate of the true electron transfer (ET) reaction from O-quinol MADH to amicyanin. The reorganization energy associated with the ET reaction is decreased from 2.3 to 1.8 eV. The electronic coupling associated with the ET reaction is decreased from 12 to 3 cm(-1). The crystal structure of alphaF55A MADH in complex with its electron acceptors, amicyanin and cytochrome c-551i, has been determined. Little difference in the overall structure is seen, relative to the native complex; however, there are significant changes in the solvent content of the active site and substrate channel. The crystal structure of alphaF55A MADH has also been determined with phenylhydrazine covalently bound to TTQ in the active site. Phenylhydrazine binding significantly perturbs the orientation of the TTQ rings relative to each other. The ET results are discussed in the context of the new and old crystal structures of the native and mutant enzymes.  相似文献   

7.
The obligate methylotroph Methylomonas sp. strain J produces two azurins (Az-iso1 and Az-iso2) as candidates for electron acceptor from methylamine dehydrogenase (MADH) in the electron-transfer process involving the oxidation of methylamine to formaldehyde and ammonia. The X-ray crystallographic study indicated that Az-iso2 gives two types of crystals (form I and form II) with polyethylene glycol (PEG4000) and ammonium sulfate as the precipitants, respectively. Comparison between the two Az-iso2 structures in forms I and II reveals the remarkable structural changes at the top surface of the molecule around the copper atom. Az-iso2 possesses Gly43 instead of Val43 or Ala43, which is unique among all other azurins around the copper ligand His46, inducing the remarkable structural change in the loop region from Gly37 to Gly43. When the structure of Az-iso2 is superimposed on that of amicyanin in the ternary complex composed of MADH, amicyanin, and cytochrome c(551), the loop of Az-iso2 deeply overlaps with the light subunit of MADH. However, the Az-iso2 molecule is probably able to avoid any steric hindrance with the cognate MADH to form the complex for intermolecular electron-transfer reaction, since the loop containing Gly43 is flexible. We discuss why the electron-transfer activity of Az-iso2 is fivefold higher than that of Az-iso1.  相似文献   

8.
The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits, mauB and mauA. The accessory gene products appear to be required for proper export of the protein to the periplasm, synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group, and formation of several structural disulfide bonds. To accomplish the heterologous expression of correctly assembled MADH, eight genes from the methylamine utilization gene cluster of P. denitrificans, mauFBEDACJG, were placed under the regulatory control of the coxII promoter of Rhodobacter sphaeroides and introduced into R. sphaeroides by using a broad-host-range vector. The heterologous expression of MADH was constitutive with respect to carbon source, whereas the native mau promoter allows induction only when cells are grown in the presence of methylamine as a sole carbon source and is repressed by other carbon sources. The recombinant MADH was localized exclusively in the periplasm, and its physical, spectroscopic, kinetic and redox properties were indistinguishable from those of the enzyme isolated from P. denitrificans. These results indicate that mauM and mauN are not required for MADH or TTQ biosynthesis and that mauFBEDACJG are sufficient for TTQ biosynthesis, since R. sphaeroides cannot synthesize TTQ. A similar construct introduced into Escherichia coli did not produce detectable MADH activity or accumulation of the mauB and mauA gene products but did lead to synthesizes of amicyanin, the mauC gene product. This finding suggests that active recombinant MADH is not expressed in E. coli because one of the accessory gene products is not functionally expressed. This study illustrates the potential utility of R. sphaeroides and the coxII promoter for heterologous expression of complex enzymes such as MADH which cannot be expressed in E. coli. These results also provide the foundation for future studies on the molecular mechanisms of MADH and TTQ biosynthesis, as well as a system for performing site-directed mutagenesis of the MADH gene and other mau genes.  相似文献   

9.
Ma JK  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2006,45(27):8284-8293
Amicyanin is a type I copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). The conversion of Proline52 of amicyanin to a glycine does not alter the physical and spectroscopic properties of the copper binding site, but it does alter the rate of electron transfer (ET) from MADH. The values of electronic coupling (H(AB)) and reorganization energy (lambda) that are associated with the true ET reaction from the reduced O-quinol tryptophan tryptophylquinone (TTQ) of MADH to oxidized amicyanin are significantly altered as a consequence of the P52G mutation. The experimentally determined H(AB) increases from 12 to 78 cm(-1), and lambda increases from 2.3 to 2.8 eV. The rate and salt-dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin are also changed by the P52G mutation. Kinetic data suggests that a new common reaction step has become rate-limiting for both the true and gated ET reactions that occur from different redox forms of MADH. A comparison of the crystal structures of P52G amicyanin with those of native amicyanin free and in complex with MADH provided clues as to the basis for the change in ET parameters. The mutation results in the loss of three carbons from Pro52 and the movement of the neighboring residue Met51. This reduces the number of hydrophobic interactions with MADH in the complex and perturbs the protein-protein interface. A model is proposed for the ET reaction with P52G amicyanin in which the most stable conformation of the protein-protein complex with MADH is not optimal for ET. A new preceding kinetic step is introduced prior to true ET that requires P52G amicyanin to switch from this redox-inactive stable complex to a redox-active unstable complex. Thus, the ET reaction of P52G amicyanin is no longer a true ET but one that is conformationally gated by the reorientation of the proteins within the ET protein complex. This same reaction step now also gates the ET from N-quinol MADH, which is normally rate-limited by a proton transfer.  相似文献   

10.
Sun D  Li X  Mathews FS  Davidson VL 《Biochemistry》2005,44(19):7200-7206
Amicyanin is a type I copper protein that mediates electron transfer (ET) from methylamine dehydrogenase (MADH) to cytochrome c-551i. Pro(94) resides in the "ligand loop" of amicyanin, a sequence of amino acids that contains three of the four copper ligands. ET from the reduced O-quinol tryptophan tryptophylquinone of MADH to oxidized P94A amicyanin is a true ET reaction that exhibits values of electronic coupling (H(AB)) and reorganization energy (lambda) that are the same as for the reaction of native amicyanin. In contrast, the parameters for the ET reaction from reduced P94A amicyanin to oxidized cytochrome c-551i have been significantly altered as a consequence of the mutation. These values of H(AB) and lambda are 8.3 cm(-)(1) and 2.3 eV, respectively, compared to values of 0.3 cm(-)(1) and 1.2 eV for the reaction of native reduced amicyanin. The crystal structure of reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart [Carrell, C. J., Sun, D., Jiang, S., Davidson, V. L., and Mathews, F. S. (2004) Biochemistry 43, 9372-9380]. In one of these, conformation B, a water molecule has replaced Met(98) as a copper ligand, and the ET distance to the heme of the cytochrome is increased by 1.4 A. Analysis of these structures suggests that the true k(ET) for ET from the copper in conformation B to heme would be much less than for ET from conformation A. A novel kinetic mechanism is proposed to explain these data in which the reduction of Cu(2+) by methylamine dehydrogenase is a true ET reaction while the oxidation of Cu(1+) by cytochrome c-551i is kinetically coupled ET. By comparison of the temperature dependence of the observed rate of the coupled ET reaction from reduced P94A amicyanin to cytochrome c-551i with the predicted rates and temperature dependence for the true ET reaction from conformation A, it was possible to determine the K(eq) and values of DeltaH degrees and DeltaS degrees that are associated with the non-ET reaction that modulates the observed ET rate.  相似文献   

11.
The type I copper center of amicyanin was replaced with a binuclear CuA center. To create this model CuA protein, a portion of the amino acid sequence that contains three of the ligands to the native type I copper center of Paracoccus denitrificans amicyanin was replaced with the corresponding portion of sequence that provides five ligands for the CuA center of cytochrome c oxidase from P. denitrificans. UV-visible and electron paramagnetic resonance spectroscopy confirm that the engineered protein as isolated possesses the mixed-valence Cu1.5Cu1.5 (purple) CuA center. Comparison of the spectroscopic properties of this CuA amicyanin with those of the CuA centers of other natural and engineered CuA proteins suggests that the spectroscopic features may be dictated more by the protein host than the sequence of the CuA loop. Novel reactions for a simple CuA model protein are also described. In contrast to other natural and engineered CuA proteins, the fully reduced CuA amicyanin may be reoxidized by molecular oxygen to the mixed-valence state. It is also shown that CuA amicyanin can serve as an electron donor and an electron acceptor for other redox proteins. The mixed-valence form accepts electrons from cytochromes c-551i and c-550 from P. denitrificans. The fully reduced form donates electrons to native and P94F amicyanin. The function as either an electron donor or acceptor is consistent with the measured redox potential of CuA amicyanin of +273 mV. These data indicate that this CuA amicyanin will be a particularly useful model protein for structure-function studies of reactivity and the electron transfer properties of the CuA redox center.  相似文献   

12.
Amicyanin is a type 1 copper protein that serves as an electron acceptor for methylamine dehydrogenase (MADH). The site of interaction with MADH is a "hydrophobic patch" of amino acid residues including those that comprise a "ligand loop" that provides three of the four copper ligands. Three prolines are present in this region. Pro94 of the ligand loop was previously shown to strongly influence the redox potential of amicyanin but not affinity for MADH or mechanism of electron transfer (ET). In this study Pro96 of the ligand loop was mutated. P96A and P96G mutations did not affect the spectroscopic or redox properties of amicyanin but increased the K(d) for complex formation with MADH and altered the kinetic mechanism for the interprotein ET reaction. Values of reorganization energy (λ) and electronic coupling (H(AB)) for the ET reaction with MADH were both increased by the mutation, indicating that the true ET reaction observed with native amicyanin was now gated by or coupled to a reconfiguration of the proteins within the complex. The crystal structure of P96G amicyanin was very similar to that of native amicyanin, but notably, in addition to the change in Pro96, the side chains of residues Phe97 and Arg99 were oriented differently. These two residues were previously shown to make contacts with MADH that were important for stabilizing the amicyanin-MADH complex. The values of K(d), λ, and H(AB) for the reactions of the Pro96 mutants with MADH are remarkably similar to those obtained previously for P52G amicyanin. Mutation of this proline, also in the hydrophobic patch, caused reorientation of the side chain of Met51, another reside that interacted with MADH and caused a change in the kinetic mechanism of ET from MADH. These results show that proline residues near the copper site play key roles in positioning other amino acid residues at the amicyanin-MADH interface not only for specific binding to the redox protein partner but also to optimize the orientation of proteins for interprotein ET.  相似文献   

13.
Site-directed mutagenesis was used to alter active-site residues of methylamine dehydrogenase (MADH) from Paracoccus denitrificans. Four residues of the beta subunit of MADH which are in close proximity to the tryptophan tryptophylquinone (TTQ) prosthetic group were modified. The crystal structure of MADH reveals that each of these residues participates in hydrogen bonding interactions with other active-site residues, TTQ or water. Relatively conservative mutations which removed the potentially reactive oxygens on the side chains of Thr122, Tyr119, Asp76 and Asp32 each resulted in greatly reduced or undetectable levels of MADH production. The reduction of MADH levels was determined by assays of activity and Western blots of crude extracts with antisera specific for the MADH beta subunit. No activity or cross-reactive protein was detected in extracts of cells expressing D76N, T122A and T122C MADH mutants. Very low levels of active MADH were produced by cells expressing D32N, Y119F, Y119E and Y119K MADH mutants. The Y119F and D32N mutants were purified from cell extracts and found to be significantly less stable than wild-type MADH. Only the T122S MADH mutant was produced at near wild-type levels. Possible roles for these amino acid residues in stabilizing unusual structural features of the MADH beta subunit, protein folding and TTQ biosynthesis are discussed.  相似文献   

14.
Paracoccus denitrificans methylamine dehydrogenase (MADH) is an enzyme containing a quinone cofactor tryptophan tryptophylquinone (TTQ) derived from two tryptophan residues (betaTrp(57) and betaTrp(108)) within the polypeptide chain. During cofactor formation, the two tryptophan residues become covalently linked, and two carbonyl oxygens are added to the indole ring of betaTrp(57). Expression of active MADH from P. denitrificans requires four other genes in addition to those that encode the polypeptides of the MADH alpha(2)beta(2) heterotetramer. One of these, mauG, has been shown to be involved in TTQ biogenesis. It contains two covalently attached c-type hemes but exhibits unusual properties compared to c-type cytochromes and diheme cytochrome c peroxidases, to which it has some sequence similarity. To test the role that MauG may play in TTQ maturation, the predicted proximal histidine to each heme (His(35) and His(205)) has each been mutated to valine, and wild-type MADH was expressed in the background of these two mauG mutants. The resultant MADH has been characterized by mass spectrometry and electrophoretic and kinetic analyses. The majority species is a TTQ biogenesis intermediate containing a monohydroxylated betaTrp(57), suggesting that this is the natural substrate for MauG. Previous work has shown that MADH mutated at the betaTrp(108) position (the non-oxygenated TTQ partner) is predominantly also this intermediate, and work on these mutants is extended and compared to the MADH expressed in the background of the histidine to valine mauG mutations. In this study, it is unequivocally demonstrated that MauG is required to initiate the formation of the TTQ cross-link, the conversion of a single hydroxyl located on betaTrp(57) to a carbonyl, and the incorporation of the second oxygen into the TTQ ring to complete TTQ biogenesis. The properties of MauG, which are atypical of c-type cytochromes, are discussed in the context of these final stages of TTQ biogenesis.  相似文献   

15.
The crystal structure of an electron transfer complex of aromatic amine dehydrogenase (AADH) and azurin is presented. Electrons are transferred from the tryptophan tryptophylquinone (TTQ) cofactor of AADH to the type I copper of the cupredoxin azurin. This structure is compared with the complex of the TTQ-containing methylamine dehydrogenase (MADH) and the cupredoxin amicyanin. Despite significant similarities between the two quinoproteins and the two cupredoxins, each is specific for its respective partner and the ionic strength dependence and magnitude of the binding constant for each complex are quite different. The AADH-azurin interface is largely hydrophobic, covering approximately 500 A(2) of surface on each molecule, with one direct hydrogen bond linking them. The closest distance from TTQ to copper is 12.6 A compared with a distance of 9.3 A in the MADH-amicyanin complex. When the MADH-amicyanin complex is aligned with the AADH-azurin complex, the amicyanin lies on top of the azurin but is oriented quite differently. Although the copper atoms differ in position by approximately 4.7 A, the amicyanin bound to MADH appears to be rotated approximately 90 degrees from its aligned position with azurin. Comparison of the structures of the two complexes identifies features of the interface that dictate the specificity of the protein-protein interaction and determine the rate of interprotein electron transfer.  相似文献   

16.
Sun D  Davidson VL 《Biochemistry》2003,42(6):1772-1776
Within the methylamine dehydrogenase-amicyanin-cytochrome c-551i complex, electrons are transferred from tryptophan tryptophylquinone (TTQ) to heme via the type I copper center of amicyanin. Mutation of Pro94 of amicyanin to Phe increases the redox potential of the copper center within the protein complex by approximately 195 mV. This introduces a large energy barrier for the second electron transfer (ET) step in this three-protein ET chain. As a consequence of this mutation, the ET rate from TTQ to copper exhibits about a 6-fold increase and the ET rate from copper to heme exhibits about a 100-fold decrease. These changes in ET rate are consistent with the predictions of Marcus theory. Temperature dependence studies of these reactions indicate that the reorganization energies for the ET to and from the copper center are unchanged by the P94F mutation, despite the large change in redox potential that it causes. Steady-state kinetic studies indicate that despite the large energy barrier for the ET from copper to heme, methylamine-dependent reduction of heme by the three-protein complex with P94F amicyanin goes to completion. The turnover number for this steady-state reaction, however, is decreased 50-fold relative to that of the native complex. As a consequence of the P94F mutation, the rate constant for the unfavorable uphill ET reaction from copper to heme has become the rate-limiting step in the overall reaction. The evolutionary implications of the effects of this mutation on the function of this naturally occurring simple ET chain are discussed.  相似文献   

17.
The oxidation-reduction potentials of four periplasmic electron carrier proteins from Paracoccus denitrificans have been determined. Their midpoint potentials are: amicyanin, 294 +/- 6 mV; cytochrome c-550, 253 +/- 5 mV; cytochrome c-551i, 190 +/- 4 mV; and cytochrome c-553i, 148 +/- 5 mV. Although rapid amicyanin-mediated transfer of electrons from methylamine dehydrogenase to cytochrome c-551i was observed, reduced amicyanin did not reduce oxidized cytochrome c-551i in the absence of methylamine dehydrogenase.  相似文献   

18.
The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits. None of these gene products have been previously isolated. One of these, mauG, exhibits sequence similarity to diheme cytochrome c peroxidases and is required for the synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group of MADH. A system was developed for the homologous expression of MauG in P. denitrificans. Its signal sequence was correctly processed, and it was purified from the periplasmic cell fraction. The protein contains two covalent c-type hemes, as predicted from the deduced sequence. EPR spectroscopy reveals that the protein as isolated possesses about equal amounts of one high-spin heme with axial symmetry and one low-spin heme with rhombic symmetry. The low-spin heme contains a major and minor component suggesting a small degree of heme heterogeneity. The high-spin heme and the major low-spin heme component each exhibit resonances that are atypical of c-type hemes and dissimilar to those reported for diheme cytochrome c peroxidases. MauG exhibited only very weak peroxidase activity when assayed with either c-type cytochromes or o-dianisidine as an electron donor. Fully reduced MauG was shown to bind carbon monoxide and could be reoxidized by oxygen. The relevance of these unusual properties of MauG is discussed in the context of its role in TTQ biogenesis.  相似文献   

19.
The resonance Raman (RR) spectrum of oxidized methylamine dehydrogenase (MADHOX) exhibits a set of C-H, C-C, C = C, and C = O vibrational modes between 900 and 1700 cm-1 that are characteristic of the quinone moiety of the tryptophan tryptophlyquinone (TTQ) cofactor. The close similarity of the RR spectra for MADHs from Paracoccus denitrificans (Pd), Thiobacillus versutus (Tv), and bacterium W3A1 proves that the same cofactor is present in all three proteins. The MADHs from Pd and Tv have a v(C = O) mode at approximately 1625 cm-1 that shifts approximately 20 cm-1 upon 18O substitution of one of the carbonyl oxygens and is assigned to the in-phase symmetric stretch of the two C = O groups. The semiquinone form of Pd MADH has its own characteristic RR spectrum with altered peak frequencies and intensities as well as a decrease in the total number of peaks. The hydroxide and ammonia adducts of MADHOX produce RR spectra similar to that of the semiquinone. The spectral changes in all three cases are interpreted as being due to reduced conjugation of the cofactor. The ammonia adduct is formulated as a carbinolamine, a likely intermediate in the enzymatic mechanism. In contrast, formation of the electron-transfer complex between amicyanin and MADHOX has no effect on the vibrational frequencies (and, hence, structure) of either the MADH quinone or the amicyanin blue copper site. The behavior of the TTQ cofactors of Pd and Tv MADHs are very similar to one another and somewhat different from W3A1 MADH, particularly with regard to adduct formation and ability to undergo isotope exchange with solvent. These differences are ascribed to the cofactor environments within the proteins rather than to the structure of the cofactor itself.  相似文献   

20.
Zhu Z  Jones LH  Graichen ME  Davidson VL 《Biochemistry》2000,39(30):8830-8836
Methylamine dehydrogenase (MADH) and amicyanin form a physiologic complex which is required for interprotein electron transfer. The crystal structure of this protein complex is known, and the importance of certain residues on amicyanin in its interaction with MADH has been demonstrated by site-directed mutagenesis. In this study, site-directed mutagenesis of MADH, kinetic data, and thermodynamic analysis are used to probe the molecular basis for stabilization of the protein complex by an interprotein salt bridge between Arg99 of amicyanin and Asp180 of the alpha subunit of MADH. This paper reports the first site-directed mutagenesis of MADH, as well as the construction, heterologous expression, and characterization of a six-His-tagged MADH. alpha Asp180 of MADH was converted to arginine to examine the effect on complex formation with native and mutant amicyanins. This mutation had no effect on the parameters for methylamine oxidation by MADH, but significantly affected its interaction with amicyanin. Of the native and mutant proteins that were studied, their observed order of affinity for each other was as follows: native MADH and native amicyanin > native MADH and R99D amicyanin > alpha D180R MADH and native amicyanin > alpha D180R MADH and R99D amicyanin, and alpha D180R MADH and R99L amicyanin. The alpha D180R mutation also eliminated the ionic strength dependence of the reaction of MADH with amicyanin that is observed with wild-type MADH. Interestingly, the inverse mutation pair of alpha D180R MADH and R99D amicyanin did not restore the favorable salt bridge, but instead disrupted complex formation much more severely than did either individual mutation. These results are explained using molecular modeling and thermodynamic analysis of the kinetic data to correlate the energy contributions of specific stabilizing and destabilizing interactions that are present in the wild-type and mutant complexes. A model is also proposed to describe the sequence of events that leads to stable complex formation between MADH and amicyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号