首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The tissue distribution of aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) in summer-acclimatized crucian carp showed almost the same exceptional pattern as previously found in winter-acclimatized specimens. There was a nearly complete spatial separation of ALDH and ADH; in other vertebrates these enzymes occur together. This exceptional enzyme distribution is probably an adaptation to the extraordinary ability of Carassius to produce ethanol as the major metabolic end product during anoxia. Since the crucian carp is less likely to encounter anoxia during the summer, the present results suggest that the crucian carp is unable to switch over to a 'normal' ALDH and ADH distribution in the summer. However, it is also possible that there is an advantage for the summer-acclimatized crucian carp in keeping ALDH and ADH separate, because of occasional anoxic periods.  相似文献   

2.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

3.
An NAD-dependent alcohol dehydrogenase has been purified to apparent homogeneity from cell suspension cultures of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), using protamine sulphate and ammonium sulphate precipitation and chromatography on DEAE-Sephacel, Superdex 200, hydroxyapatite and HiTrap blue. The enzyme is a homodimer with a Mr of ca. 77,000. Each subunit with a Mr of 40,000 contains two zinc atoms. Its isoelectric point was found at pH 5.0. The best alcohol substrate of the enzyme is ethanol. The pH optimum for ethanol oxidation is at pH 8.7 and for acetaldehyde reduction at pH 4.6. The Michaelis constants for ethanol and NAD are 2.49 and 0.05 (pH 8.7), and for acetaldehyde and NADH 2.2 and 0.078 mM (pH 4.6), respectively. Partial amino acid sequences of the purified enzyme showed high homology to alcohol dehydrogenases from other plants.Abbreviations ADH alcohol dehydrogenase - DTT dithiothreitol - PMSF dephenylmethylsulfonyl fluoride - PVPP polyvinylpolypyrrolidone - IAA indole-3-acetic acid - TFA trifluoroacetic acid  相似文献   

4.
The activity of a high-Km aldehyde dehydrogenase in the liver cytosol was increased by phenobarbital induction. No corresponding increase in the oxidation rate of acetaldehyde in vivo was found, and it is concluded that cytosolic aldehyde dehydrogenase plays only a minor role in the oxidation of acetaldehyde during ethanol metabolism.  相似文献   

5.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption.  相似文献   

6.
Yeast alcohol dehydrogenase (EC 1.1.1.1) is able to catalyze the oxidation of acetaldehyde by NAD+ with a concomitant formation of ethanol, at pH 8.8 and pH 7.1; the stoichiometry of aldehyde oxidation vs. ethanol formation is 2:1. This enzymatic reaction obeys the Michaelis-Menten kinetics and was characterized by a high KM for acetaldehyde (68 mM) and a low kcat (2.3 s–1), at pH 8.8, 22°C. There is no visible burst of NADH during the reaction, from pH 7.1–10.1. Therefore, we have concluded that the enzyme catalyzes an apparent dismutation of two molecules of acetaldehyde into a molecule of acetic acid and a molecule of ethanol.  相似文献   

7.
The subcellular distribution and relative amounts of the two isozymes, F1 and F2, of aldehyde dehydrogenase (EC 1.2.1.3) which were recently purified to homogeneity from horse liver (Eckfeldt, J., et al. (1976) J. Biol. Chem.251, 236–240) have been investigated. A fresh horse liver homogenate was fractionated on DEAE-cellulose. The results indicate that approximately 60% of the total pH 7.0 acetaldehyde dehydrogenase activity is due to the F1 isozyme and 40% is due to the F2 isozyme. Several horse livers were then fractionated into subcellular components using a differential centrifugation method. Based on the disulfiram (Antabuse) inhibition and the aldehyde concentration dependence of the enzymatic activity, it appears that the disulfiram-sensitive F1 isozyme (Km acetaldehyde ? 70 μm) is primarily cytosolic and the disulfiram-insensitive F2 isozyme (Km acetaldehyde ? 0.2 μm) is primarily mitochondrial. Fluorescence studies showed that the acetaldehyde dehydrogenase of the intact mitochondria could utilize only the endogenous pyridine nucleotide pool and not externally added NAD. Also, the ethanol dehydrogenase activity was found to be nearly 10 times the total acetaldehyde dehydrogenase activity when assaying a horse liver homogenate at pH 7.0 and with saturating substrates. The significant differences between this work and the results reported in rat liver are discussed with respect to the physiological importance of the cytosolic and mitochondrial aldehyde dehydrogenase during the ethanol oxidation in vivo.  相似文献   

8.
The molecular biology and enzymology of aldehyde dehydrogenase (ALDH) have been extensively investigated. However, most of the studies have been confined to the mammalian forms, while the sub-mammalian vertebrate ALDHs are relatively unexplored. In the present investigation, an ALDH was purified from the hepatopancreas of grass carp (Ctenopharygodon idellus) by affinity chromatographies on α-cyanocinnamate-Sepharose and Affi-gel Blue agarose. The 800-fold purified enzyme had a specific activity of 4.46 U/mg toward the oxidation of acetaldehyde at pH 9.5. It had a subunit molecular weight of 55 000. Isoelectric focusing showed a single band with a pI of 5.3. N-terminal amino acid sequencing of 30 residues revealed a positional identity of ∼70% with mammalian mitochondrial ALDH2. The kinetic properties of grass carp ALDH resembled those of mammalian ALDH2. The optimal pH for the oxidation of acetaldehyde was 9.5. The Km values for acetaldehyde were 0.36 and 0.31 μM at pH 7.5 and 9.5, respectively. Grass carp ALDH also possessed esterase activity which could be activated in the presence of NAD+.  相似文献   

9.
Experiments were carried out to study the effect of two commonly used glutathione-depleting agents, diethylmaleate and phorone, on the oxidation of acetaldehyde and the activity of aldehyde dehydrogenase. The oxidation of acetaldehyde by intact hepatocytes was inhibited when the cells were incubated with diethylmaleate. Washing and resuspending the cells in diethylmaleate-free medium afforded protection against the inhibition of acetaldehyde oxidation. The oxidation of acetaldehyde by isolated rat liver mitochondria as well as by disrupted mitochondria in the presence of excess NAD+ was inhibited by diethylmaleate or phorone, indicating inhibition of the low-Km aldehyde dehydrogenase. In addition, diethylmaleate inhibited oxidation of acetaldehyde by the high-Km cytosolic aldehyde dehydrogenase. Significant accumulation of acetaldehyde occurred when ethanol was oxidized by hepatocytes in the presence, but not in the absence, of diethylmaleate. Thus, diethylmaleate blocks the oxidation of added or metabolically generated acetaldehyde, analogous to results with other inhibitors of the low-Km aldehyde dehydrogenase such as cyanamide. These results suggest that caution should be used in interpreting the effects of diethylmaleate or phorone on metabolic reactions, especially those involving metabolism of aldehydes such as formaldehyde, because, in addition to depleting glutathione, these agents inhibit the low-Km aldehyde dehydrogenase.  相似文献   

10.
Acetaldehyde, the first metabolite of ethanol oxidation, in concentrations ranging from 100 microM to 400 microM caused a dose-dependent linear increase in the frequency of sister-chromatid exchanges (SCE) in cultured human peripheral lymphocytes. The SCE frequency was on an average 2-fold higher when the cells were exposed to the acetaldehyde after 24 h incubation instead of at the time of mitogen stimulation (0 h). When acetaldehyde was added together with the potent aldehyde dehydrogenase inhibitor 1-aminocyclopropanol (0.1 mM), the SCE response was significantly (p less than 0.05) increased. The present results indicate that acetaldehyde is metabolized within human lymphocytes, and, moreover, that alcohol consumption during treatment with drugs that inactivate aldehyde dehydrogenase may cause a further increased incidence of acetaldehyde-induced SCE and concomitant lesions.  相似文献   

11.
Freshly obtained human term placentae were subjected to subcellular fractionation to study the localization of NAD-dependent aldehyde dehydrogenases. Optimal conditions for the cross-contamination-free subcellular fractionation were standardized as judged by the presence or the absence of appropriate marker enzymes. Two distinct isozymes, aldehyde dehydrogenase I and II, were detected in placental extracts after isoelectric focusing on polyacrylamide gels. Based on a placental wet weight, about 80% of the total aldehyde dehydrogenase activity was found in the cytosolic acid and about 10% in the mitochondrial fraction. The soluble fraction (cytosol) contained predominantly aldehyde dehydrogenase II which has a relatively high Km (9 mmol/l) for acetaldehyde and is strongly inhibited by disulfiram. The results indicate that cytosol is the main site for acetaldehyde oxidation, but the enzyme activity is too slow to prevent the placental passage of normal concentrations of blood acetaldehyde (less than 1 mumol/l) produced by maternal ethanol metabolism.  相似文献   

12.
《Life sciences》1992,51(21):PL195-PL200
We have recently shown that Helicobacter pylori possesses marked alcohol dehydrogenase (ADH) activity and is capable - when incubated with an ethanol containing solution in vitro - of producing large amounts of acetaldehyde. In the present study we report that some drugs commonly used for the eradication of H. pylori and for the treatment of gastroduodenal diseases are potent ADH inhibitors and, consequently, effectively prevent bacterial oxidation of ethanol to acetaldehyde. Colloidal bismuth subcitrate (CBS), already at a concentration of 0.01 mM, inhibited H. pylori ADH by 93% at 0.5 M ethanol and decreased oxidation of 22 mM ethanol to acetaldehyde to 82% of control. At concentrations above 5 mM, CBS almost totally inhibited acetaldehyde formation. Omeprazole, a drug also known to suppress growth of H. pylori, also inhibited H. pylori ADH and suppressed bacterial acetaldehyde formation significantly to 69% of control at a drug concentration of 0.1 mM. By contrast, the H2-receptor antagonists ranitidine and famotidine showed only modest effect on bacterial ADH and acetaldehyde production. We suggest that inhibition of bacterial ADH and a consequent suppression of acetaldehyde production from endogenous or exogenous ethanol may be a novel mechanism by which CBS and omeprazole exert their effect both on the growth of H. pylori as well as on H. pylori associated gastric injury.  相似文献   

13.
The effect of pargyline on the uptake of acetaldehyde (in the presence of pyrazole) by isolated rat liver cells was studied after incubating the liver cells for 0, 10, 30, 45, and 60 min with 0.40, 1.30, and 2.6 mm pargyline. Without any incubation period, pargyline had no effect on acetaldehyde uptake. With increasing time of incubation, there was a progressive increase in the extent of inhibition of acetaldehyde uptake by pargyline. This suggests the possibility that pargyline is metabolized to the effective inhibitor or the incubation period allows pargyline to reach its site(s) of action. Pargyline was also a more effective inhibitor of the uptake of lower concentrations of acetaldehyde, e.g., 0.167 mm, than of higher concentrations (1.0 mm) of acetaldehyde, especially after short incubation periods or when pyrazole was omitted from the reaction medium. After a 20- to 30-min incubation period, pargyline inhibited the control rate of ethanol oxidation by the liver cells, as well as the accelerated rate of ethanol oxidation found in the presence of pyruvate or an uncoupling agent. Pargyline had no effect on hepatic oxygen consumption. During ethanol oxidation, a time-dependent release of acetaldehyde into the medium was observed. Pyruvate, by increasing the rate of ethanol oxidation, increased the output of acetaldehyde five- to tenfold. Pargyline increased the output of acetaldehyde two- to threefold, despite decreasing the rate of ethanol metabolism by the liver cells. These data indicate that pargyline inhibits the low Km aldehyde dehydrogenase in intact rat liver cells and that this enzyme plays the major role in oxidizing the acetaldehyde which arises during the metabolism of ethanol. Although most of the acetaldehyde generated during the oxidation of ethanol is removed by the liver cells in an effective manner, changes in the activity of aldehyde dehydrogenase or the rate of acetaldehyde generation significantly alter the hepatic output of acetaldehyde.  相似文献   

14.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

15.
E Mezey  J J Potter 《Life sciences》1978,22(22):1985-1991
An increase in liver alcohol dehydrogenase activity was detected after 6 days of uremia in the rat, with a maximum increase occurring after 10 days. The increase was documented in the oxidative and reductive directions with ethanol and acetaldehyde as substrates, respectively; was not found in organs other than the liver and was not accompanied by increases in other cytosolic enzymes. The enzyme in the uremic animal did not differ in pH optimum for ethanol oxidation, Km for ethanol and NAD+ or in electrophoretic mobility from the enzyme in the normal animal. Adrenalectomy prevented the increase. It is suggested that the increase in liver alcohol dehydrogenase requires intact adrenal glands and is most likely caused by the stress of surgery and the uremic state.  相似文献   

16.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

17.
Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase   总被引:13,自引:0,他引:13  
Class III alcohol dehydrogenase (chi chi-ADH) from human liver binds both ethanol and acetaldehyde so poorly that their Km values cannot be determined, even at ethanol concentrations up to 3 M. However, long-chain carboxylates, e.g., pentanoate, octanoate, deoxycholate, and other anions, substantially enhance the binding of ethanol and other substrates and hence the activity of class III ADH up to 30-fold. Thus, in the presence of 1 mM octanoate, ethanol displays Michaelis-Menten kinetics. The degree of activation depends on the size both of the substrate and of the activator; generally, longer, negatively charged activators result in greater activation. At pH 10, the activator binds to the E-NAD+ form of the enzyme to potentiate substrate binding. Pentanoate activates methylcrotyl alcohol oxidation and methylcrotyl aldehyde reduction 14- and 30-fold, respectively. Such enhancements of both oxidation and reduction are specific for class III ADH; neither class I nor class II shows this effect. The implications as to the nature of the physiological substrate(s) of class III ADH are discussed in light of the recent finding that this ADH and glutathione-dependent formaldehyde dehydrogenase are identical. A new rapid purification procedure for chi chi-ADH is presented.  相似文献   

18.
Alcohol and acetaldehyde in rat's milk following ethanol administration   总被引:1,自引:0,他引:1  
C Guerri  R Sanchis 《Life sciences》1986,38(17):1543-1556
Alcohol and acetaldehyde were measured in milk and peripheral blood in chronic alcoholic rats, at 5 and 15 days of lactation. Ethanol in blood increased throughout lactation and the levels of acetaldehyde were much higher than in nonlactating alcoholic rats. The concentration of acetaldehyde in milk was always ca. 50% of that in blood, whereas that of ethanol varied within the range of 44-80% of the blood levels. Blood alcohol levels in the corresponding sucking pups were much lower than in maternal blood and increased throughout lactation. The time course of ethanol and acetaldehyde concentration in blood and milk were determined in normal lactating rats after cyanamide (40 mg/kg) and ethanol administration (2 or 4 g/kg). Milk alcohol reached higher concentrations than in blood within the first hour of ethanol administration, decreasing and remaining constant thereafter at ca. 65% of those in blood. Acetaldehyde levels in milk were always 35-45% lower than in blood. No alcohol dehydrogenase activity was found in homogenates of mammary tissue; however there was some aldehyde dehydrogenase activity. A significant decrease in mammary tissue aldehyde dehydrogenase was found in chronic alcoholic rats. The role of this enzyme is discussed.  相似文献   

19.
R Kramar  K Kremser 《Enzyme》1984,31(1):17-20
Treatment over a 3-week period of male rats with the hypolipidemic drug clofibrate results in a more than twofold increase of aldehyde dehydrogenase activity in liver homogenate and mitochondrial fraction. As a comparable rise is also found in the postmitochondrial fraction, it is suggested that not only the mitochondrial but also the microsomal moiety of aldehyde dehydrogenase is induced by clofibrate. Possibly the known enhancement of ethanol catabolism and some protective effect on the liver of clofibrate-treated animals is due, at least in part, to the increased acetaldehyde oxidation by liver aldehyde dehydrogenase.  相似文献   

20.
An acetaldehyde dehydrogenase from germinating seeds   总被引:2,自引:2,他引:0       下载免费PDF全文
An acetaldehyde dehydrogenase from germinating peanut cotyledons has been purified and its properties have been studied. At the highest purification achieved the preparation is free of alcohol dehydrogenase activity.

The enzyme is specific toward diphosphopyridine nucleotide, and can oxidize a variety of aldehydes. The highest reaction rate is obtained with acetaldehyde, which is oxidized to acetate. All the attempts to demonstrate the formation of an energy-rich acetyl derivative during the course of the reaction failed. The enzyme is inhibited by aldol; it is sensitive toward sulfhydryl reagents, including arsenite. Reduced glutathione stabilizes the enzyme, while cysteine, mercaptoethanol, and coenzyme A are inhibitory.

Acetaldehyde dehydrogenase is activated by phosphate and inhibited by fatty acyl-CoA derivatives. It appears to be activated by the substrate, as was deduced from the shape of the plot of reaction velocity against acetaldehyde. These properties suggest that the enzyme is an allosteric protein.

The plot of reaction velocity against substrate concentration is anomalous. The shape of this plot seems to reflect the presence of 2 different enzymatic activities, one with extremely high apparent affinity for acetaldehyde. The 2 activities may reflect 2 conformational states of a single enzyme or 2 separate enzymes.

Experiments with tissue slices indicate that the reaction catalyzed by this enzyme is a step in the oxidation of ethanol to acetyl-CoA. This enzyme may also participate in the oxidation of pyruvate to acetyl-CoA in certain tissues.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号