首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lactococcus lactis subsp. lactis CRL 1584 isolated from a bullfrog hatchery produces a bacteriocin that inhibits both indigenous Citrobacter freundii (a Red-Leg Syndrome related pathogen) and Lactobacillus plantarum, and Listeria monocytogenes as well. Considering that probiotics requires high cell densities and/or bacteriocin concentrations, the effect of the temperature on L. lactis growth and bacteriocin production was evaluated to find the optimal conditions. Thus, the growth rate was maximal at 36 °C, whereas the highest biomass and bacteriocin activity was achieved between 20 and 30 °C and 20–25 °C, respectively. The bacteriocin synthesis was closely growth associated reaching the maximal values at the end of the exponential phase. Since bacteriocins co-production has been evidenced in bacterial genera, a purification of the bacteriocin/s from L. lactis culture supernatants was carried out. The active fraction was purified by cationic-exchange chromatography and then, a RP-HPLC was carried out. The purified sample was a peptide with a 3353.05 Da, a molecular mass that matches nisin Z, which turned out to be the only bacteriocin produced by L. lactis CRL 1584. Nisin Z showed bactericidal effect on C. freundii and L. monocytogenes, which increased in the presence l-lactic acid?+?H2O2. This is the first report on nisin Z production by L. lactis from a bullfrog hatchery that resulted active on a Gram-negative pathogen. This peptide has potential probiotic for raniculture and as food biopreservative for bullfrog meat.  相似文献   

2.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

3.
Nisin fermentation by Lactococcus lactis requires a low pH to maintain a relatively higher nisin activity. However, the acidic environment will result in cell arrest, and eventually decrease the relative nisin production. Hence, constructing an acid-resistant L. lactis is crucial for nisin harvest in acidic nisin fermentation. In this paper, the first discovery of the relationship between D-Asp amidation-associated gene (asnH) and acid resistance was reported. Overexpression of asnH in L. lactis F44 (F44A) resulted in a sevenfold increase in survival capacity during acid shift (pH 3) and enhanced nisin desorption capacity compared to F44 (wild type), which subsequently contributed to higher nisin production, reaching 5346 IU/mL, 57.0% more than that of F44 in the fed-batch fermentation. Furthermore, the engineered F44A showed a moderate increase in D-Asp amidation level (from 82 to 92%) compared to F44. The concomitant decrease of the negative charge inside the cell wall was detected by a newly developed method based on the nisin adsorption amount onto cell surface. Meanwhile, peptidoglycan cross-linkage increased from 36.8% (F44) to 41.9% (F44A), and intracellular pH can be better maintained by blocking extracellular H+ due to the maintenance of peptidoglycan integrity, which probably resulted from the action of inhibiting hydrolases activity. The inference was further supported by the acmC-overexpression strain F44C, which was characterized by uncontrolled peptidoglycan hydrolase activity. Our results provided a novel strategy for enhancing nisin yield through cell wall remodeling, which contributed to both continuous nisin synthesis and less nisin adsorption in acidic fermentation (dual enhancement).  相似文献   

4.
Nisin production of three bioengineered strains, (LAC338, LAC339 and LAC340) with immunity (nisFEG) and/or regulation (nisRK) genes of nisin biosynthesis on plasmids in the Lactococcus lactis LL27 nisin producer, was evaluated under pH-controlled and pH-uncontrolled batch fermentations. Optimization studies showed that fructose and yeast extract yielded the highest nisin activity. The strains LAC338, LAC339, and LAC340 produced 24, 45, and 44% more nisin, respectively, than wild-type L. lactis LL27 after 12-h incubation. However, sharp decreases in the yield of nisin were observed at the late phase of fermentation with LAC339 and LL27 in contrast to LAC340 and LAC338 strains for which the high level of nisin could be maintained longer. Obviously, increasing the copy number of the regulation genes together with immunity genes in the nisin producers retarded the loss of nisin in the late phase of the fermentation.  相似文献   

5.

Objectives

To develop orally administrated anti-Helicobacter pylori vaccination, a Lactococcus lactis strain was genetically constructed for fusion expression of H. pylori protective antigens HpaA and Omp22.

Results

The fusion gene of omp22 and hpaA with an adapter encoding three glycines was cloned from a plasmid pMAL-c2x-omp22-hpaA into Escherichia coli MC1061 and L. lactis NZ3900 successively using a shutter vector pNZ8110. Expression of the fusion gene in L. lactis was induced with nisin resulting in production of proteins with molecular weights of 50 and 28 kDa. Both of them were immunoreactive with mouse anti-H. pylori sera as determined via western blotting. Oral vaccination of BALB/c mice using the L. lactis strain carrying pNZ8110-omp22-hpaA elicited significant systematic humoral immune response (P < 0.05).

Conclusions

This is the first report showing that a fusion protein of two H. pylori antigens was efficiently expressed in L. lactis with immunogenicity. This is a considerable step towards H. pylori vaccines.
  相似文献   

6.
7.
In order to increase nisin production in a cost-effective manner, non-nutritional factors as well as nutritional parameters must be optimized. In this study, optimization of the most important non-nutritional factors for nisin production using orthogonal array method was performed. Optimization of temperature, agitation, age and size of inoculum, medium initial pH value and flask volume/medium volume ratio in de Man, Rogosa and Sharpe (MRS) medium in batch fermentation was accomplished. Nisin was produced by Lactococcus lactis subsp. lactis PTCC 1336 and measured by bioassay method using Micrococcus luteus PTCC 1169 as the nisin-sensitive strain. The optimum levels of non-nutritional factors for maximum nisin production and productivity were obtained as: flask volume/medium volume ratio: 5.00, medium initial pH value: 8.00, inoculum size: 1%, inoculum age: 24 h old (A = 1.7), agitation: 100 rpm and temperature: 27 °C. Under the optimized conditions, maximum nisin production and maximum nisin productivity were 599.70 IU/mL and 37.48 IU/mL/h, respectively.  相似文献   

8.
Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage.  相似文献   

9.
The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88?±?3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.  相似文献   

10.

Objective

To develop a safe and effective oral vaccine against Helicobacter pylori using its HpaA protein expressed in Lactococcus lactis.

Results

The gene encoding HpaA was obtained by PCR and ligated to pNZ8110-lysM following digestion with NaeI + SphI. The recombinant plasmid was transferred into E. coli for multiplication, and then into L. lactis. The recombinant L. lactis was induced to express HpaA, resulting in two products of 29 and 25 kDa, both of which yielded positive immunoreaction with mouse antisera against H. pylori, as confirmed by immunoblot assays. The 29 kDa product constituted 12% of the cell lysates. Oral inoculation with the engineered L. lactis evoked significantly elevated serum IgG level in mice (P < 0.05).

Conclusions

A novel engineered L. lactis strain was developed that efficiently produces whole HpaA protein with desired antigenicity and potent immunogenicity. It provides a basis for approaches to L. lactis-delivered anti-H. pylori vaccination.
  相似文献   

11.
The influence of temperature, initial pH, and carbon and nitrogen sources on bacteriocin secreted by Lactococcus lactis MM19 (MM19) and Pediococcus acidilactici MM33 (MM33) was evaluated. It was found that 30 and 45 °C were the growth temperatures for higher nisin and pediocin production by MM19 and MM33, respectively. The initial pH values for higher production of nisin and pediocin were 9 and 6, respectively. Glucose and wheat peptone E430 were found as suitable carbon and nitrogen sources, respectively, for highest nisin production by MM19 at 30 °C and initial pH of 9. In these conditions, nisin production could be increased by 6.7 times as compared to the control medium (de Man, Rogosa, and Sharpe—MRS broth). Similarly, fructose and pea peptone were suitable carbon and nitrogen sources, respectively, for highest production of pediocin by MM33 at 45 °C and initial pH of 6. In these conditions, pediocin production by MM33 was increased by three times as compared to the control medium (tryptone-glucose-yeast extract—TGE broth).  相似文献   

12.
Cell wall is closely related to bacterial robustness and adsorption capacity, playing crucial roles in nisin production in Lactococcus lactis. Peptidoglycan (PG), the essential component of cell wall, is usually modified with MurNAc O-acetylation and GlcNAc N-deacetylation, catalyzed by YvhB and XynD, respectively. In this study, increasing the two modifications in L. lactis F44 improved autolysis resistance by decreasing the susceptibility to PG hydrolases. Furthermore, both modifications were positively associated with overall cross-linkage, contributing to cell wall integrity. The robust cell wall rendered the yvhB/xynD-overexpression strains more acid resistant, leading to the increase of nisin production in fed-batch fermentations by 63.7 and 62.9%, respectively. Importantly, the structural alterations also reduced nisin adsorption capacity, resulting in reduction of nisin loss. More strikingly, the co-overexpression strain displayed the highest nisin production (76.3% higher than F44). Our work provides a novel approach for achieving nisin overproduction via extensive cell wall remodeling.  相似文献   

13.

Objectives

Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress.

Results

Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g-1 dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain.

Conclusion

The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.
  相似文献   

14.
Lactococcus lactis subsp. cremoris MG1363 is an opportunistic lactic acid bacterium (LAB) that has emerged as one of the most promising candidate cell factories. The availability of genome-level information and U.S. Federal Drug administration’s designation of ‘generally recognized as safe’ (GRAS) are two of the more important key factors for its wide-ranging applications in numerous biotechnological processes. Several studies have shown that various physiological conditions, such as temperature, salinity and pH, can influence the physiological growth of L. lactis; agitation, in particular, can increase the production of amino acids and fermentation by-products. However, the effect of different agitation speeds on the growth of L. lactis’ has rarely been examined. In the study reported here, we used a gas chromatography–mass spectrometry-based metabolomics approach to investigate the effects of different agitation speeds on the production of proteinogenic amino acids (PAAs) by L. lactis MG1363. Lactococcus lactis MG1363 was grown under four different agitation speeds (50, 100, 150 and 200 rpm) at a constant temperature of 30 °C, and the differences in the specific growth rate and levels of PAAs were determined. Approximately 15 PAAs with concentrations ranging from 0 to 50 mmol/L were detected under all conditions. Partial least squares discriminant analysis (PLS-DA) revealed a distinct difference when L. lactis was incubated at 100 and 150 rpm. Heatmap analysis showed that the levels of pyruvate-, glutamate- and aspartate-based amino acids were varied under the different agitation conditions. The time-series analysis showed an increment of lysine when L. lactis’ cells were cultured with shaking at 50, 100 and 200 rpm. Taken together, these results highlight the changes in the levels of PAAs in L. lactis cells in response to agitation. In addition, the collected dataset will be useful for optimization of 13C-labeling based experiments in L. lactis.  相似文献   

15.
Hypoaspis larvicolus (Acari: Laelapidae) (first report from Turkey) occurred together with Sancassania polyphyllae (Acari: Acaridae) on the larvae of the scarab beetle, Polyphylla fullo (Coleoptera: Scarabaeidae), that were feeding on the roots of strawberry in Aydin, Turkey. Laboratory studies were conducted to (1) observe whether H. larvicolus feeds and completes its life cycle on the various stages of S. polyphyllae or other astigmatid mites, such as Acarus siro, Carpoglyphus lactis and Tyrophagus putrescentiae (Acaridae), and to determine its population growth when feeding on these prey, and (2) to determine development periods, longevity and fecundity of H. larvicolus feeding on C. lactis. Hypoaspis larvicolus females did not feed on S. polyphyllae, but fed, developed and reproduced when A. siro, C. lactis or T. putrescentiae were provided as prey. Hypoaspis larvicolus is larviparous as well as oviparous. The female lays eggs or gives birth to larvae. If a female gives birth to a larva, it is attached under the female’s venter for 1–2 days, a phenomenon recorded for the first time in Hypoaspis; in fact, for the first time in mites. The results of the population growth experiments revealed that H. larvicolus feeding on C. lactis produced the highest number of eggs, juveniles and adults. The developmental periods of H. larvicolus feeding on C. lactis at life-cycle path I (larva to adult) and II (egg to adult) were 12.2?±?0.3 and 15.6?±?0.6 days (females) and 19.5?±?0.2 and 20.9?±?0.4 days (males), respectively. Longevity of females versus males of H. larvicolus was 120.6?±?7.2 versus 91.6?±?13.1 days (life cycle I) and 110.0?±?27.7 versus 118.3?±?10.9 days (life cycle II), respectively.  相似文献   

16.

Objective

The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148).

Results

Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5–6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5–6.5) was at pH 5.5.

Conclusion

The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.
  相似文献   

17.

Objectives

To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis.

Results

The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively.

Conclusions

Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.
  相似文献   

18.
Klebsiella pneumoniae is a 2,3-butanediol producer, and R-acetoin is an intermediate of 2,3-butanediol production. R-acetoin accumulation and dissimilation in K. pneumoniae was studied here. A budC mutant, which has lost 2,3-butanediol dehydrogenase activity, accumulated high levels of R-acetoin in culture broth. However, after glucose was exhausted, the accumulated R-acetoin could be reused by the cells as a carbon source. Acetoin dehydrogenase enzyme system, encoded by acoABCD, was responsible for R-acetoin dissimilation. acoABCD mutants lost the ability to grow on acetoin as the sole carbon source, and the acetoin accumulated could not be dissimilated. However, in the presence of another carbon source, the acetoin accumulated in broth of acoABCD mutants was converted to 2,3-butanediol. Parameters of R-acetoin production by budC mutants were optimized in batch culture. Aerobic culture and mildly acidic conditions (pH 6–6.5) favored R-acetoin accumulation. At the optimized conditions, in fed-batch fermentation, 62.3 g/L R-acetoin was produced by budC and acoABCD double mutant in 57 h culture, with an optical purity of 98.0 %, and a substrate conversion ratio of 28.7 %.  相似文献   

19.
Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml?1) decreased the cell numbers by about 2 log CFU ml?1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.  相似文献   

20.
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号