首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Interstitial cells of Cajal are responsible for rhythmic contractions of the musculature of the gastrointestinal tract and blood vessels. The existence of these cells and spontaneous rhythmicity were noticed in amphibian vein and the findings are reported in this paper. The postcaval vein was identified in the frog, Rana tigrina and was perfused with amphibian Ringer solution after isolation. Contractile activity was recorded through a tension transducer connected to a polygraph. The isolated postcaval vein showed spontaneous rhythmic activity. Addition of cold Ringer solution decreased, while warm Ringer increased, the rate of contraction. Adrenaline caused inhibition of rhythmic activity at a dosage that increased the rate of isolated sinus venosus. Sections of the postcaval vein, when stained supravitally with methylene blue, showed the presence of interstitial cells of Cajal. Photic stimulation of the vein in the presence of methylene blue led to a significant decrease in the rate of spontaneous beating of the vein. These findings indicate that the postcaval vein of frog is capable of inherent rhythmcity, which is dependent on the interstitial cells of Cajal but is independent of the sinus venosus.  相似文献   

2.
The three mammalian neurokinins, substance P, neurokinin A and neurokinin B, as well as some agonists selective for their respective receptors, NK-P, NK-A and NK-B, were tested in a variety of pharmacological preparations in order to evaluate if the biological responses of the various tissues were mediated by single or multiple receptor types. Previous observations that the dog carotid artery, the rabbit pulmonary artery and the rat portal vein are selective preparations respectively for SP, NKA and NKB were confirmed in the present study by showing that only the respective selective agonists were active on these tissues. Multiple functional sites were demonstrated in intestinal tissues (guinea pig ileum, rat duodenum), which apparently contain the three neurokinin receptors. A large number of NK-P, together with some NK-A receptor sites were found in the guinea pig and rat urinary bladder. Similarly, the guinea pig trachea and the rabbit mesenteric vein contain NK-A and NK-P functional sites. Rat and rabbit vas deferens stimulated electrically respond as typical NK-A preparations, since they are almost insensitive to SP or NKB selective agonists. A mixture of NK-A and NK-B receptor sites has been shown to be present in the hamster urinary bladder: dog and human urinary bladder definitely contain NK-A receptors and the dog bladder also some NK-P functional sites.  相似文献   

3.
Portal hypertension, a major complication of cirrhosis, is caused by both increased portal blood flow due to arterial vasodilation and augmented intrahepatic vascular resistance due to sinusoidal constriction. In this study, we examined the possible involvement of resident macrophages in the tone regulation of splanchnic blood vessels using bile duct ligated (BDL) portal hypertensive rats and an in vitro organ culture method. In BDL cirrhosis, the number of ED2-positive resident macrophages increased by two- to fourfold in the vascular walls of the mesenteric artery and extrahepatic portal vein compared with those in sham-operated rats. Many ED1-positive monocytes were also recruited into this area. The expression of inducible nitric oxide (NO) synthase (iNOS) mRNA was increased in the vascular tissues isolated from BDL rats, and accordingly, nitrate/nitrite production was increased. Immunohistochemistry revealed that iNOS was largely expressed in ED1-positive and ED2-positive cells. We further analyzed the effect of iNOS expression on vascular smooth muscle contraction using an in vitro organ culture system. iNOS mRNA expression and nitrate production significantly increased in vascular tissues (without endothelium) incubated with 1 μg/ml lipopolysaccharide (LPS) for 6 h. Immunohistochemistry indicated that iNOS was largely expressed in ED2-positive resident macrophages. α-Adrenergic-stimulated contractility of the mesenteric artery was greatly suppressed by LPS treatment and was restored by N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor); in contrast, portal vein contractility was largely unaffected by LPS. Sodium nitroprusside (NO donor) and 8-bromo-cGMP showed greater contractile inhibition in the mesenteric artery than in the portal vein with decreasing myosin light chain phosphorylation. In the presence of an α-adrenergic agonist, the mesenteric artery cytosolic Ca(2+) level was greatly reduced by sodium nitroprusside; however, the portal vein Ca(2+) level was largely unaffected. These results suggest that the induction of iNOS in monocytes/macrophages contributes to a hypercirculatory state in the cirrhosis model rat in which the imbalance of the responsiveness of visceral vascular walls to NO (mesenteric artery > portal vein) may account for the increased portal venous flow in portal hypertension.  相似文献   

4.
A rise in intracellular ionised calcium concentration ([Ca(2+)](i)) at sites adjacent to the contractile proteins is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques with special accent on the fluorescence confocal microscopy and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for study of the relationship between the structural organisation of the living smooth muscle myocyte and the features of calcium signalling at subcellular level. Applying fluorescent confocal microscopy and tight-seal recording of transmembrane ion currents to freshly isolated vascular myocytes we have demonstrated that: (1) Ca(2+) sparks originate from clustered opening of ryanodine receptors (RyRs) and build up a cell-wide increase in [Ca(2+)](i) upon myocyte excitation; (2) spontaneous Ca(2+) sparks occurred at the highest rate at certain preferred locations, frequent discharge sites (FDS), which are associated with a prominent portion of the sarcoplasmic reticulum (SR) located close to the cell membrane; (3) Ca(2+)-dependent K(+) and Cl(-) channels sense the local changes in [Ca(2+)](i) during a calcium spark and thereby couple changes in [Ca(2+)](i) within a microdomain to changes in the membrane potential, thus affecting excitability of the cell; (4) an intercommunication between RyRs and inositol trisphosphate receptors (IP(3)Rs) is one of the important determinants of intracellular calcium dynamics that, in turn, can modulate the cell membrane potential through differential targeting of calcium dependent membrane ion channels. Furthermore, using immunohystochemical approaches in combination with confocal imaging we identified non-contractile cells closely resembling interstitial cells (ICs) of Cajal (which are considered to be pacemaker cells in the gut) in the wall of portal vein and mesenteric artery. Using electron microscopy, tight-seal recording and fluorescence confocal imaging we obtained information on the morphology of ICs and their possible coupling to smooth muscle cells (SMCs), calcium signalling in ICs and their electrophysiological properties. The functions of these cells are not yet fully understood; in portal vein they may act as pacemakers driving the spontaneous activity of the muscle; in artery they may have other a yet unsuspected functions.  相似文献   

5.
Reserpine treatment increased the amplitude of the spontaneous phasic contraction (SPC) of portal veins obtained from rabbit and guinea pig but did not alter that of rat. The amplitude of the SPC of portal veins from these animals was increased after 6-hydroxydopamine (6-OHDA) but was not changed after cocaine treatment. Reserpine- and 6-OHDA-induced changes in portal vein SPC amplitude were accompanied by an increase in 45Ca influx. These results indicate that the elevation in SPC amplitude is accompanied by an increase in calcium influx.  相似文献   

6.
Chronic hypoxia (CH) results in reduced sensitivity to vasoconstrictors in conscious rats that persists upon restoration of normoxia. We hypothesized that this effect is due to endothelium-dependent hyperpolarization of vascular smooth muscle (VSM) cells after CH. VSM cell resting membrane potential was determined for superior mesenteric artery strips isolated from CH rats (PB = 380 Torr for 48 h) and normoxic controls. VSM cells from CH rats studied under normoxia were hyperpolarized compared with controls. Resting vessel wall intracellular Ca(2+) concentration ([Ca(2+)](i)) and pressure-induced vasoconstriction were reduced in vessels isolated from CH rats compared with controls. Vasoconstriction and increases in vessel wall [Ca(2+)](i) in response to the alpha(1)-adrenergic agonist phenylephrine (PE) were also blunted in resistance arteries from CH rats. Removal of the endothelium normalized resting membrane potential, resting vessel wall [Ca(2+)](i), pressure-induced vasoconstrictor responses, and PE-induced constrictor and Ca(2+) responses between groups. Whereas VSM cell hyperpolarization persisted in the presence of nitric oxide synthase inhibition, heme oxygenase inhibition restored VSM cell resting membrane potential in vessels from CH rats to control levels. We conclude that endothelial derived CO accounts for persistent VSM cell hyperpolarization and vasoconstrictor hyporeactivity after CH.  相似文献   

7.
The inhibitory effects of the Ca2+ channel antagonists D-600, diltiazem, nifedipine and seven 1,4-dihydropyridine analogs of nifedipine against 80 mM K+ depolarization induced responses in guinea pig trachea, parenchyma, and pulmonary artery and rat renal and mesenteric artery preparations were determined. Together with similar data previously obtained for guinea pig ileum and bladder, these data permitted an assessment of tissue selectivity of action in smooth muscles of a series of Ca2+ channel antagonists under constant conditions (saline composition) and an identical challenge (K+ depolarization). Very similar rank orders of activity were expressed in all tissues suggesting that the same basic structure-activity relationship operates. However, the series of antagonists were significantly less active in respiratory smooth muscle than in other visceral or vascular smooth muscles. pA2 values for a series of 1,4-dihydropyridine antagonists measured in guinea pig taenia coli against Ca2+-induced responses in K+-depolarizing media correlated with mean inhibitory concentration values against K+-induced responses, suggesting that the latter were an appropriate measure of antagonist potency. pA2 values measured for nifedipine, D-600, and diltiazem against Ca2+-induced responses in taenia coli in the presence of a depolarizing K+ saline, or methylfurmethide, histamine, or 5-hydroxytryptamine did not differ, suggesting that the same channels were activated regardless of stimulant.  相似文献   

8.
The Ca2+ channel antagonists D-600, diltiazem, and nifedipine are competitive antagonists of Ca2+ responses in K+-depolarized guinea pig taenia coli and rat mesenteric artery preparations. pA2 values for D-600, diltiazem, and nifedipine in taenia coli were 8.28, 7.44, and 9.27, respectively and in mesenteric artery, 9.6, 7.83, and 10.4, respectively. The combination of nifedipine plus diltiazem gave in both tissues antagonism greater than that calculated on the basis of additivity. This suggests, consistent with published 3H-labelled radioligand binding data, that diltiazem and nifedipine interact at distinct sites. However, the combination nifedipine plus D-600 yielded antagonism consistent with additivity of response.  相似文献   

9.
Cells with irregular shapes, numerous long thin filaments, and morphological similarities to the gastrointestinal interstitial cells of Cajal (ICCs) have been observed in the wall of some blood vessels. These ICC-like cells (ICC-LCs) do not correspond to the other cell types present in the arterial wall: smooth muscle cells (SMCs), endothelial cells, fibroblasts, inflammatory cells, or pericytes. However, no clear physiological role has as yet been determined for ICC-LCs in the vascular wall. The aim of this study has been to identify and characterize the functional response of ICC-LCs in rat mesenteric arteries. We have observed ICC-LCs and identified them morphologically and histologically in three different environments: isolated artery, freshly dispersed cells, and primary-cultured cells from the arterial wall. Like ICCs but unlike SMCs, ICC-LCs are positively stained by methylene blue. Cells morphologically resembling methylene-blue-positive cells are also positive for the ICC and ICC-LC markers α-smooth muscle actin and desmin. Furthermore, the higher expression of vimentin in ICC-LCs compared with SMCs allows a clear discrimination between these two cell types. At the functional level, the differences observed in the variations of cytosolic free calcium concentration of freshly dispersed SMCs and ICC-LCs in response to a panel of vasoactive molecules show that ICC-LCs, unlike SMCs, do not respond to exogenous ATP and [Arginine]8-vasopressin.  相似文献   

10.
Iloprost caused a concentration-dependent decrease in the response to noradrenaline in the rabbit isolated endothelium denuded rings from superior mesenteric artery but not thoracic aorta. Similar inhibition was obtained by verapamil using identical concentrations. In Ca(2+)-free EGTA containing medium noradrenaline both at lower and higher concentrations elicited a reduced contractile response and further addition of Ca2+ (2.5 mM) to the medium produced a second contraction in both mesenteric artery and aortic rings which was significantly and equally inhibited by iloprost and verapamil using identical concentrations in mesenteric artery but not in aortic rings. Prior addition of iloprost to the medium did not protect the inhibitory effect of phenoxybenzamine against noradrenaline-induced contraction. These results were taken as an evidence for the possible Ca2+ entry reducing effect of iloprost in mesenteric artery but not thoracic aorta. These results were also taken as an indirect evidence supporting the hypothesis that increased synthesis of prostacyclin by noradrenaline in the vascular wall may inhibit the contractile effect of the agonist by a (-) feedback mechanism mediated by Ca2+ entry into the vascular smooth muscle.  相似文献   

11.
Interstitial cells of Cajal (ICC) associated with the submucosal (submucous) plexus (ICC-SP) in the proximal colon of the guinea pig were studied by immunohistochemistry and electron microscopy. Whole-mount stretch preparations with c-Kit immunohistochemistry revealed that a number of ICC-SP constituted a dense cellular network around the submucosal plexus. Some of these ICC-SP were observed in the vicinity of the muscularis mucosae in sections immunostained for c-Kit and α-smooth muscle actin. Ultrastructural observation demonstrated, for the first time, that ICC-SP of the proximal colon of the guinea pig retained typical ultrastructural characteristics of ICC repeatedly reported in association with the tunica muscularis of the gastrointestinal tract: a basal lamina, caveolae, many mitochondria, abundant intermediate filaments and the formation of gap junctions with the same type of cells. The most remarkable ultrastructural finding was the presence of thick bundles composed of the processes of ICC-SP connected to each other via large gap junctions. These ICC-SP might be involved in the main mucosal functions of the proximal colon of the guinea pig, namely the transportation of water and electrolytes, possibly via their involvement in the spontaneous contractions of the muscularis mucosae.  相似文献   

12.
The permeability to high molecular weight (IgG, 150 kD) proteins of the plasma membrane of receptor-coupled smooth muscles permeabilized with β-escin was determined using confocal microscopy of immunofluorescent tracers and measurement of lactate dehydrogenase (LDH, 135–140 kD) leakage. Permeabilized strips of rabbit portal vein and guinea pig ileum were incubated in a relaxing solution containing mouse anti-smooth muscle α-actin antibody and immunostained with F(ab′)2 labeled with tetramethyl rhodamine isothiocyanate. Confocal light microscopy of Triton X-100 and β-escin permeabilized cells showed homogeneous staining of the cytoplasm, whereas in α-toxin treated and intact preparations only damaged cells at the edges of the strips were stained. Both the Ca2+-sensitizing effect of phenylephrine, in rabbit portal vein, and Ca2+ release by carbachol in guinea pig ileum, were retained after permeabilization and the treatment with the primary antibody. During the 30 min permeabilization, 38%, and within the next 75 min an additional approximately 30%, of the total LDH leaked out from the β-escin-treated group, but not from the α-toxin-treated group (3.2%). The responsiveness to agonist and maximum contractility was improved if the preparations were incubated during the introduction of proteins at 4°C, rather than 24°C. Ca2+-independent myosin light chain kinase (61 kD) contracted the permeabilized portal vein in the absence of free Ca2+ (pCa < 8). In conclusion, permeabilization with β-escin allows the transmembrane passage of 150 kD proteins under our experimental conditions that also retain receptor-coupled signal transduction.  相似文献   

13.
A variety of experimental conditions were applied with the aim to estimate the correlation between the contribution of ATP synthase to the respiratory flux control and the calcium-induced activation of succinate oxidation in heart mitochondria isolated from rat, rabbit and guinea pig. The sensitivity of respiration in heart mitochondria to the decrease in temperature from 37 degrees C to 28 degrees C decreases in the order rabbit > guinea pig > rat. Ca2+ effect on succinate oxidation rate in state 3 respiration was species- and temperature-dependent and ranged from 0 (rat, 37 degrees C) to +44% (rabbit, 28 degrees C). For mitochondria from all experimental animals, the increase of Ca2+ in physiological range of concentration did not change state 2 respiration rate, and the stimulatory effect of Ca2+ on state 3 respiration was more pronounced at 28 degrees C than at 37 degrees C. The respiratory subsystem was sensitive to Ca2+ ions only in rabbit heart mitochondria. A high positive correlation between Ca2+ ability to stimulate succinate oxidation in state 3 and the control exerted by ATP synthase over the respiratory flux provides argument confirming stimulation of ATP synthase by Ca2+ ions.  相似文献   

14.
目的:探讨肝脏移植术前受体64排螺旋CT血管成像(computed tomography angiography CTA)在临床的应用价值。方法:对28例晚期肝病患者进行64排增强后动脉期、门脉期及静脉期扫描,使用多种重建方法,由两名以上有经验的医师对肝脏血管进行分析评价,并与18例移植术后结果比较,探讨64排CT血管成像对肝移植术前准备的意义。结果:发现肝动脉变异6例,腹腔干起始部狭窄2例,腹腔干动脉瘤1例,脾动脉瘤2例,肝脏主要供血动脉直径<3mm 3例,肝门静脉海绵样变3例,肝外门静脉主干栓塞5例,伴有肝内门静脉栓塞3例,肝外门静脉主干栓塞伴肠系膜上静脉广泛栓塞2例,下腔静脉癌栓3例,其中癌栓达右心房2例。结论:64排CT血管成像无创、可靠,通过多种重建方法,能清晰显示肝脏血管,对肝脏移植术前血管做出评价,具有可靠的临床指导意义。  相似文献   

15.
Summary Automated quantitative image analysis (QIAF) was used to measure and compare the adrenergic nerve plexuses of 4 blood vessels from the guinea pig, demonstrated by glyoxylic acid fluorescence (GAF). The results showed considerable quantitative variation of plexus density, size of bundles, and numbers of varicosities. A range of alternative procedural and anatomical sources of variability were investigated and assessed. The carotid artery was found to have a dense plexus with more nerves than that of the mesenteric artery; the mesenteric vein and abdominal aorta had sparse plexuses. The carotid artery plexus, despite the density of its nerves, possessed only half the number of varicosities of the mesenteric artery plexus. This sparse varicosity population was shown to have a similar density to the varicosities demonstrated by QIAF in the scattered nerves of the mesenteric vein and abdominal aorta. QIAF confirmed visual estimates of adrenergic plexus density, and was able to demonstrate less obvious differences of nerve density and size, and varicosity populations, between the different plexuses studied. The method is applicable to stretch preparations and transverse sections of many adrenergically innervated tissues.  相似文献   

16.
The sarcoplasmic reticulum (SR) was studied in the smooth muscles of rabbit main pulmonary artery, mesenteric vein, aorta, mesenteric artery, taenia coli, guinea pig mesenteric artery, and human uterus, and correlated with contractions of the smooth muscles in Ca-free media. SR volumes were determined in main pulmonary artery (5.1%), aorta (5%), portal-anterior mesenteric vein (2.2%), taenia coli (2%), and mesenteric artery (1.8%): because of tangentially sectioned membranes these estimates are subject to a correction factor of up to +50% of the values measured. Smooth muscles that contained a relatively large volume of SR maintained significant contractile responses to drugs in the virtual absence of extracellular calcium at room temperatures, while smooth muscles that had less SR did not. The unequal maximal contractions of main pulmonary artery elicited by different drugs were also observed in Ca-free, high potassium-depolarizing solution, indicating that they were secondary to some mechanism independent of changes in membrane potential or calcium influx. Longitudinal tubules of SR run between and are fenestrated about groups of surface vesicles separated from each other by intervening dense bodies. Extracellular markers (ferritin and lanthanum) entered the surface vesicles, but not the SR. The peripheral SR formed couplings with the surface membrane: the two membranes were separated by gaps of approximately 10 nm traversed by electron-opaque connections suggestive of a periodicity of approximately 20–25 nm. These couplings are considered to be the probable sites of electromechanical coupling in twitch smooth muscles. Close contacts between the SR and the surface vesicles may have a similar function, or represent sites of calcium extrusion. The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.  相似文献   

17.
An inhibitor of apamin binding has been purified to homogeneity in three chromatographic steps from the venom of the scorpion, Leiurus quinquestriatus hebraeus. The inhibitor, which we have named leiurotoxin I, represents less than 0.02% of the venom protein. It is a 3.4-kDa peptide with little structural homology to apamin although it has some homology to other scorpion toxins such as charybdotoxin, noxiustoxin, and neurotoxin P2. Leiurotoxin I completely inhibits 125I-apamin binding to rat brain synaptosomal membranes (Ki = 75 pM). Thus, it is 10-20-fold less potent than apamin. Leiurotoxin I is not a strictly competitive inhibitor of this binding reaction. Like apamin, leiurotoxin I blocks the epinephrine-induced relaxation of guinea pig teniae coli (ED50 = 6.5 nM), while having no effect on the rate or force of contraction in guinea pig atria or rabbit portal vein preparations. Thus, leiurotoxin I of scorpion venom and apamin of honeybee venom demonstrate similar activities in a variety of tissues, yet are structurally unrelated peptides. These two peptides should be useful in elucidating the role of the small conductance, Ca2+-activated K+ channels in different tissues.  相似文献   

18.
Identification of interstitial cells of Cajal in the rabbit portal vein   总被引:9,自引:0,他引:9  
Two layers of interstitial cells (ICs) of Cajal were detected by c-kit and methylene blue staining in the media of the rabbit portal vein in subendothelial intramuscular and deeper intramuscular positions, displaced radially from each other by about 40-70 microm. Two morphologically distinct types of ICs were found among enzymatically dispersed cells from this vessel: small multipolar cells with stellate-shaped bodies not exceeding 20 microm, and spindle-shaped cells from 40 to 300 microm in length with numerous branching processes. Relaxed smooth muscle cells (SMCs) had a more constant length (90-150 microm). The cell membrane capacitance was 46.5+/-2.2 pF in SMCs, 39.7+/-2.4 pF in spindle-shaped ICs and 27.8+/-0.7 pF in multipolar ICs. Although darker under phase contrast, after loading with fluo-4 AM, single isolated ICs of both types usually had brighter fluorescence than SMCs and displayed various spontaneous calcium events, including Ca(2+) sparks and Ca(2+) waves. Ca(2+) waves were usually followed by contraction of SMCs but no change in shape of ICs. In some ICs spontaneous [Ca(2+)](i) transients (lasting about 2s) which propagated towards the end of the processes were observed. Physical contacts between the processes of ICs and the body of one or more SMCs survived the isolation procedure. Application of noradrenaline (1-10 microM), caffeine (1-10 mM) or high-K(+) solution (60mM) led to a rise of [Ca(2+)](i) in both SMCs and ICs evoking contraction of SMCs but not ICs. No differences in electrophysiological characteristics between single enzymatically isolated IC and SMC were detected; thus, the resting membrane potential estimated under current-clamp conditions was -46.5+/-2.0 mV in spindle-shaped ICs and -45.6+/-2.7 mV in SMCs. Under voltage-clamp, both ICs and SMCs revealed a well-developed voltage-gated nifedipine-sensitive L-type Ca(2+) current, a set of K(+) currents, including spontaneous transient outward currents (STOCs) but no Na(+) current. This study for the first time directly demonstrated the presence in vascular tissue of ICs. Possible roles for ICs including their involvement in spontaneous activity of the vessel were discussed.  相似文献   

19.
In the adventitia of large arteries, dendritic cells are located between nerve fibers, some of which contain substance P. The aim of the present study was to examine whether neurokinin 1 receptor (NK-1R) was expressed by dendritic cells in the arterial wall. Parallel sections of aortic and carotid artery segments were immunostained with anti-NK-1R and cell-type-specific antibodies. Dendritic cells in the arterial wall expressed NK-1R, albeit at a low level. Other cells, which intensely expressed NK-1R, were located along the border between the media and adventitia. They did not co-express any dendritic cell markers, including fascin, CD1a, S100, or Lag-antigen, and were negative for CD68, CD3, and mast cell tryptase. These NK-1R+ cells were laser-capture microdissected and studied by means of electron-microscopic analysis. The microdissected cells were in direct contact with nerve endings, and their ultrastructure was typical of the interstitial cells of Cajal present in the gastrointestinal tract. Further systematic electron-microscopic analysis revealed that the cells displaying the features typical of interstitial cells of Cajal were a basic element of the human arterial wall architectonics. Arterial interstitial cells of Cajal were negative for c-kit but they expressed vasoactive intestinal peptide receptor 1 (VIPR1). Destructive alterations of contacts between arterial interstitial cells of Cajal and nerve endings were observed in arterial segments with atherosclerotic lesions. The functional significance of the arterial interstitial cells of Cajal and their possible involvement in atherosclerosis and other vascular diseases need clarification.This work was supported by the St Vincents Clinic Foundation, Sydney, Australia.  相似文献   

20.
The apamin-sensitive component of the inhibitory response of the gastrointestinal musculature involves the small conductance Ca(2+)-activated K(+) channel SK3. Kit-immunoreactive (ir) interstitial cells of Cajal appear to be involved in nitrergic inhibition while the role of the recently described CD34-ir fibroblast-like cells adjacent to, but distinct from, the cells of Cajal remains elusive. The distribution of SK3 was studied by immunohistochemistry in the normal human gut, in motility disorders with a lack of cells of Cajal (infantile hypertrophic pyloric stenosis and Hirschsprung's disease) and in mice deficient in cells of Cajal. SK3 immunoreactivity was observed exclusively in Kit-negative interstitial cells adjacent to, but distinct from, the Kit-ir interstitial cells of Cajal in the normal gut. The distribution of SK3-ir cells was not altered in conditions where cells of Cajal were lacking. These cells were CD34-ir fibroblast-like cells in the human gut and in the mouse stomach, while SK3-ir cells in the mouse intestine were CD34 negative. As SK channels are reportedly involved in inhibitory neurotransmission, our morphological observations suggest that SK3-ir interstitial cells, distinct from the Kit-ir interstitial cells of Cajal, may represent a novel cellular component in the control of excitability of the digestive musculature. Further studies will be required to directly address the function of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号